RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Meisyo

[Meisyo]ビッグデータから学ぶ試合の基礎設計5

投稿日:2019年1月3日 更新日:

ここでは、「どのパラメータが打率等にどれくらい関係するのか」を理解することで強いチームを作る指針を記載しておきます。
[Meisyo]ビッグデータから学ぶ試合の基礎設計4の詳細版です。

今回は、右打と左打はパラメータの相関関係に違いがあるのか?という問いに答えたいと思います。

まずは「右打、左打で平均打率に違いがあるのか?」という問いですが、
R(73867打席):0.2428
L(39563打席):0.2468

左打席に+1.6%補正があるようです。
(とはいえ前回の論文(1割近く)と比べそんなに変わらない結果でした)

コードでは、左打席が右打席に比べ一塁ベースに1m近いです。
正しい結果ですね。

では、どのパラメータが打率に本当に相関しているのか?を単回帰分析で求め、
相関しているパラメータ群を重回帰分析して、各パラメータの相関度合いを確認します。

あとはOPS、HR率なども調査しておきました。改良した分析用コードも載せておきますね!

打率の各パラメータの相関関係

図の見方
タイトル:「Result(***) vs Param(xxx) from pa >= 20」
結果(***)へのパラメータ(xxx)の相関図(20打席(pa)以上)
Right-Hand:右打、Left-Hand:左打
R^2=決定係数。0~1を取る。1に近いほど相関していると言える。
(>=0.010が2つで相関あり○、1つで相関あり△、なしで相関なし×)

一覧表:

パラメータ 相関± 右打R^2 左打R^2 相関
b_mt + 0.276 0.224
b_pw + 0.011 0.022
b_sp ? 0.001 0.002 ×
b_sf 0.008 0.009 ×
b_df 0.018 0.009
b_ss + 0.010 0.016
b_er 0.002 0.000 ×
lv + 0.021 0.014
cond + 0.014 0.008
type_b ? 0.003 0.000 ×
type_b(R) 0.013 0.020
type_b(C) + 0.027 0.006
type_b(F) ? 0.000 0.007 ×

b_mt、b_pw、b_ssが相関している。

lv(レベル)とcond(調子)は上がれば上がるほど、上記3つのパラメータが上がるので相関するはずという見込みで計算しました。
その通りでした。

type_b(打席位置:隠しパラメータ)は、R(後ろ)がマイナスに相関、C(中央)がプラスに相関△、F(前)が相関なし。
Rは剛速球対応用で、Fが超変化球対応用として設計しました。Rは変化球に弱く、Fは速球に弱いという裏設計ですね。
現在はC=F>Rです。速球投手が増えればRが台頭してくるはず!

重回帰分析:
Ave(R)
Name Coefficients
2 b_ss 0.000343
1 b_pw 0.000550
0 b_mt 0.003096
切片:0.08263525884539452
Ave(L)
Name Coefficients
2 b_ss 0.000450
1 b_pw 0.000852
0 b_mt 0.002925
切片:0.07878629626174283

各相関図:

ミートはとてもキレイな相関図になってます。
左右どちらも変わらないんですね!


パワーは相関してる・・・?相関してるか。みたいな図ですね。


走力は相関なし。
不思議です。要調査ですね。


肩力は相関なし。
マイナス相関してそうに見えます。肩が上がればその分ミートとパワーが下がるしね。


守備力は相関あり△。
マイナス相関してそうに見えます。守備が上がればその分ミートとパワーが下がるしね。


反応は相関あり。
あまり偏回帰係数は大きくなさそう。


エラー回避は相関なし。
反応とエラー回避はランダムで決定される(=その他のパラメータから独立している)ので、そんなものですね。


選手Lvが上がれば打率が上がる!
育成での能力アップと、打てない人はそれまでに淘汰されてるしわかるかな。
・・・Lv70とか誰だ?


調子は相関あり△。
調子は経時変動あるから実際わからない。


R(-1)、C(0)、F(+1)として設定。
相関なし。


Rはマイナスに相関。(NotR=C,F)


Cはプラスに相関。(NotC=R,F)


Fは相関なし。(NotF=R,C)
これは不思議ですね。

OPSの各パラメータの相関関係

一覧表:

パラメータ 相関± 右打R^2 左打R^2 相関
b_mt + 0.218 0.183
b_pw + 0.027 0.044
b_sp ? 0.001 0.001 ×
b_ss + 0.014 0.016

これもミートが圧倒してますね・・・。

重回帰分析:
OPS(R)
Name Coefficients
2 b_ss 0.001203
1 b_pw 0.002206
0 b_mt 0.006626
切片:0.28842150643875264
OPS(L)
Name Coefficients
2 b_ss 0.001145
1 b_pw 0.003046
0 b_mt 0.006414
切片:0.28466512542137623
左右の違いがわからない。

各相関図:

HR率の各パラメータの相関関係

結果:
やっぱりパワーだけしか相関しなかった。
ただしパワー100でもそんなにHR率は上がらない。悲しい。

各相関図:

コード

# -*- coding: utf-8 -*-

import os, sys, csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# 基礎設定
file_name = 'meisyo_b 20181217.csv'

# CSV読み込み
df = pd.read_csv(file_name, encoding='utf-8')

# 投手能力結合・削除
for i in ['sp', 'co', 'st', 'bb1n', 'bb2n', 'bb3n']:
    df['p_'+i] = df['p_'+i] + df['pt_p_'+i] + df['pw_p_'+i]
    df = df.drop(['pt_p_'+i, 'pw_p_'+i], axis=1)

# 野手能力結合・削除
for i in ['mt', 'pw', 'sp', 'sf', 'df', 'er', 'ss']:
    df['b_'+i] = df['b_'+i] + df['pt_b_'+i] + df['pw_b_'+i]
    df = df.drop(['pt_b_'+i, 'pw_b_'+i], axis=1)

# 欠損値のある行を把握
# print(df.isnull().sum())

# 全体で欠損値のある行を削除
df = df.drop(['skill', 'g_pos', 'grow_type'], axis=1)

# 打席数*未満を削除
df = df.where(df['ab'] >= 20).dropna()
#df['type_b'] = df['type_b'].replace({'F': 1, 'C': 0, 'R': 0})

# R/L
R = df.where(df['side_b'] == 'R').dropna()
L = df.where(df['side_b'] == 'L').dropna()

# データ把握
# print(df.columns)
# print(df.head())
# print(R.head())
# print(L.head())
# print("R(" + str(sum(R['ab'])) + "):"+ str(sum(R['h']) / sum(R['ab'])))
# print("L(" + str(sum(L['ab'])) + "):"+ str(sum(L['h']) / sum(L['ab'])))

# 結果出力
dR = pd.DataFrame(index=[], columns=[])
dL = pd.DataFrame(index=[], columns=[])
dR['ave'] = R['h'] / R['ab']
dR['obp'] = (R['h'] + R['bb'] + R['hbp']) / (R['ab'] + R['bb'] + R['hbp'] + R['sf'])
dR['slg'] = R['tb'] / R['ab']
dR['ops'] = dR['obp'] + dR['slg']

dL['ave'] = L['h'] / L['ab']
dL['obp'] = (L['h'] + L['bb'] + L['hbp']) / (L['ab'] + L['bb'] + L['hbp'] + L['sf'])
dL['slg'] = L['tb'] / L['ab']
dL['ops'] = dL['obp'] + dL['slg']

yR = dR.values[:, 0]
yL = dL.values[:, 0]

# 相関係数
list = ['b_mt']
xR = R.loc[:, list].values
xL = L.loc[:, list].values

# title
plt.title("Result(Ave) vs Param(b_mt) from pa >= 20 [y = ax + b]")
plt.xlabel("param")
plt.ylabel("result")

# plt 回帰係数
model_R = linear_model.LinearRegression()
model_L = linear_model.LinearRegression()
model_R.fit(xR, yR)
model_L.fit(xL, yL)

# plt 散布図
plt.scatter(xR, yR, s=2, c="red", alpha=0.5, label="Right-Hand(a="+str("{0:.4f}".format(model_R.coef_[0]))+")\nR^2="+str("{0:.3f}".format(model_R.score(xR, yR))))
plt.scatter(xL, yL, s=2, c="blue", alpha=0.5, label="Left-Hand(a="+str("{0:.4f}".format(model_L.coef_[0]))+")\nR^2="+str("{0:.3f}".format(model_L.score(xL, yL))))

# plt 回帰
plt.plot(xR, model_R.predict(xR))
plt.plot(xL, model_L.predict(xL))

print("Ave(R)")
print(pd.DataFrame({"Name":list, "Coefficients":model_R.coef_}).sort_values(by='Coefficients') )
print(model_R.intercept_)

print("Ave(L)")
print(pd.DataFrame({"Name":list, "Coefficients":model_L.coef_}).sort_values(by='Coefficients') )
print(model_L.intercept_)

# show
plt.legend()
plt.show()
sys.exit()

ひとこと

図示することは大事ダナーと思いました。
だって数値だけでは全然わかりませんから!

出た数値を使って歴代優勝校の選手を生成します。(^q^)

-Web制作, Meisyo

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

知らなかった!「while」と「do while」の違い

Perl→PHPを独学でやって現在C言語をやってます。 「do{ ~ }while( ~ );」←ナニコレ状態でした。 「while」と「do while」の違いは、 「前」で条件判定をするか、「後ろ …

[Meisyo]速球の地位向上

[Meisyo]ビッグデータから学ぶ試合の基礎設計4から早4か月。 「速球の上方修正してほしいな」というコメントが届きました。 すみません! 制球に比べ、速球は蔑ろにされてきたことはわかっております。 …

[Meisyo]ビッグデータから学ぶ試合の基礎設計3

これは[Meisyo]ビッグデータから学ぶ試合の基礎設計2の投手編です! ここでは、「どのパラメータが打率等にどれくらい関係するのか」を理解することで強いチームを作る指針を記載しておきます。 というわ …

(VPSでつくる) phpMyAdminインストール

連載第九回目です。 GUI上でMariaDB(MySQL)を触れるようにするために、phpMyAdminをインストールしましょう。 この記事は、VPSで作るPythonでのWebアプリ運用環境の連載記 …

とても簡単なPythonインストール in Windows10

拍子抜けするほど簡単なPythonインストール。 パソコン初心者のあなたにも簡単にできます! 目次 Pythonとは? Pythonの入手 Pythonのインストール Pythonの動作確認 インスト …