RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】データ解釈学入門

投稿日:2022年1月11日 更新日:

「データ分析の初心者はこれを読むべし」と思う本です。なぜなら、データの解釈・観測をはじめデータサイエンスは難しい事柄が多く、かつビジネスで分析をする際に、初心者をはじめ分析者全員が陥りやすい罠があるからです。今回は、それらの落とし穴を正しく考慮するための理解しやすい書籍を紹介します。

名称


データ解釈学

著者

江崎貴裕

概要

データサイエンスは難しいです。特に、簡単に思われがちなデータの観測、収集、抽出、操作について説明されている書籍は多くはありません。その時点でその分析は無価値・・・というより、有害になりえます。
今回の書籍はそれらの基礎的知識をはじめ、分析とは何なのか、どう再現性(科学的姿勢)を担保していくのかを解説しています。

必要知識

なし

得られるスキル

測定, 誤差の分解, バイアス, 交絡因子, 因果関係, サンプリング, 記述統計量, 分布, 多変量データ, 信頼性, 再現性

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


  1. […] 【教材紹介】データ解釈学入門 […]

comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】機械学習を解釈する技術

多くの企業で導入されるようになってきた機械学習。 その機械の判断基準、本当にわかっていますか? 今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法 …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

統計的因果探索(LiNGAM)を分析実務観点で詳しく解説

統計的因果推論の一分野である統計的因果探索。 その研究の中で生み出された画期的なモデルLiNGAMの解説を行います。PythonによるLiNGAMの実装については、cdt15/lingamと、応用モデ …

野球ゲームデータで遊ぶデータサイエンス(正規分布の検定編)

名将と呼ばれた者達のデータを使って、データサイエンスを学んでみましょう! 生きた&整えられたデータは中々公開されていないので、今回の野球ゲームのデータは分析に適していると思われます。もちろん、Kagg …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ

「練習ごとに難易度が違いすぎるんですけど!!」という不満は把握しています。 ただ、これまでそこには触れてきませんでした。 なぜなら・・・まだデータ取れてないし、分析できないでしょ(言い訳) ・・・怠慢 …