RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】データ解釈学入門

投稿日:2022年1月11日 更新日:

「データ分析の初心者はこれを読むべし」と思う本です。なぜなら、データの解釈・観測をはじめデータサイエンスは難しい事柄が多く、かつビジネスで分析をする際に、初心者をはじめ分析者全員が陥りやすい罠があるからです。今回は、それらの落とし穴を正しく考慮するための理解しやすい書籍を紹介します。

名称


データ解釈学

著者

江崎貴裕

概要

データサイエンスは難しいです。特に、簡単に思われがちなデータの観測、収集、抽出、操作について説明されている書籍は多くはありません。その時点でその分析は無価値・・・というより、有害になりえます。
今回の書籍はそれらの基礎的知識をはじめ、分析とは何なのか、どう再現性(科学的姿勢)を担保していくのかを解説しています。

必要知識

なし

得られるスキル

測定, 誤差の分解, バイアス, 交絡因子, 因果関係, サンプリング, 記述統計量, 分布, 多変量データ, 信頼性, 再現性

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


  1. […] 【教材紹介】データ解釈学入門 […]

comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]パラメータバランス調整 ver 0.10(a)

パラメータバランスを調整します。 理由としては、ミートが強すぎるからです。 ミートが神の地位を手に入れて早・・・というより、Meisyoが最初からそうだった。 「ミートを上げれば即ち打てる」で、パワー …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

ヒストグラムの階級数を決める方法論

データ分析業務ははっきり言って泥臭い。 分析の設計を行い、可視化を行ってから使えるデータかどうか判断できる。 そもそもそれはデータ分析前の話なのだが。 今回は、可視化の中でもデータの傾向を把握するのに …

[社内コンペ] 細胞画像認識

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:2位 精度:68.3% 120枚をクラス1~3で各40枚としていました。 ただし、その数値に合わせに行こうとすること …

【教材紹介】BERTによる自然言語処理

自然言語処理の応用モデルであるBERTを今すぐに使いたい、機械学習の概要を知っている担当者レベルに向けた書籍を紹介します。 名称 BERTによる自然言語処理 著者 ストックマーク株式会社 近江崇宏、金 …