RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】データ解釈学入門

投稿日:2022年1月11日 更新日:

「データ分析の初心者はこれを読むべし」と思う本です。なぜなら、データの解釈・観測をはじめデータサイエンスは難しい事柄が多く、かつビジネスで分析をする際に、初心者をはじめ分析者全員が陥りやすい罠があるからです。今回は、それらの落とし穴を正しく考慮するための理解しやすい書籍を紹介します。

名称


データ解釈学

著者

江崎貴裕

概要

データサイエンスは難しいです。特に、簡単に思われがちなデータの観測、収集、抽出、操作について説明されている書籍は多くはありません。その時点でその分析は無価値・・・というより、有害になりえます。
今回の書籍はそれらの基礎的知識をはじめ、分析とは何なのか、どう再現性(科学的姿勢)を担保していくのかを解説しています。

必要知識

なし

得られるスキル

測定, 誤差の分解, バイアス, 交絡因子, 因果関係, サンプリング, 記述統計量, 分布, 多変量データ, 信頼性, 再現性

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


  1. […] 【教材紹介】データ解釈学入門 […]

comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

自然言語処理×教師なし学習での温故知新 PythonでBERT-MaskedLM実装

はじめに 自然言語処理(BERT、GPT-3)および画像認識(ViT)等で以前のState of The Artモデルを超える精度を発揮したTransformer(元論文:Attention Is A …

【教材紹介】前処理大全

前処理はデータ分析で重要な事項です。なぜなら、有用な特徴情報を上手く抽出できていなければどんなモデルであれ無用の長物です。ただ、前処理は体系だった学問としては存在せず、実務の中で学んでいくことが多いた …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ

「練習ごとに難易度が違いすぎるんですけど!!」という不満は把握しています。 ただ、これまでそこには触れてきませんでした。 なぜなら・・・まだデータ取れてないし、分析できないでしょ(言い訳) ・・・怠慢 …

【教材紹介】効果検証入門

広告やマーケティング施策のビジネスインパクトの測定はだいたい間違っています。 それを正しく測定するための因果推論に関して、日本語ベースのわかりやすい1冊を紹介します。 名称 効果検証入門 著者 安井翔 …

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …