RのWeb制作

Webサービス制作のための技術情報を。

Python

TensorFlow RNNで詰まるの巻

投稿日:

DeeplearningのフレームワークTensorFlowの学習まで漕ぎ着けました。
CNN(画像認識用と言っても過言ではない)はゼロから始めるディープラーニングでだいたいOK。
何度か読み返してわりとなんとか・・・。

実装面がちょっと困る。

なぜなら、数列の扱いに慣れていないからだろう。
行列の変形や逆行列の導出にちょっと詰まるくらいだが、スラスラ理解できるようにならねば・・・。

RNN(自然言語処理等の時系列把握)が詰まった。

なぜなら「突然の数式全開」

とりあえずまずは写経して、もう1度読む時に日本語訳しよう。

プログラミングはまず書くことが大事だと思います。割とマジで。

写経前「?????」

写経後「?????動いた!面白いけど謎」

読解中「あ!これやったやつやん~こういう理解でいいんか」

読解後「だいたいわかる!!」

出来ないって思ったら負けなんですよね。自分に負ける。それがだいたいの失敗理由だ。

-Python

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

手書き数字診断士(機械学習)ver 0.1 K近傍法を使ってみた

手書き文字の判定精度が全然上がらないので、他の手法を試してみました。 sklearnの開発元によると、以下の方法が良いらしい・・・。 なるほど!SVCで上手くいかない → K近傍法だな! 早速実装 p …

[Kaggle] Titanic 約80% by ランダムフォレスト

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。 Colaboratory 実施期間:2019/0 …

機械学習の勉強から見えた「間違いだらけのAI認識」

「AI」という字面が新聞にもネットニュースにも数多く出てくるようになりました。 ただ、機械学習を勉強してて思ったんですが・・・・AIの定義が曖昧すぎる 内容が書いてある記事も殆ど無いし…。 AIが行っ …

[Meisyo]ビッグデータから学ぶ試合の基礎設計4

ここでは、「どのパラメータが打率等にどれくらい関係するのか」を理解することで強いチームを作る指針を記載しておきます。 機械学習(重回帰分析)を使って本気で遊んでます。 実際のデータセットはこちら 野手 …

手書き数字診断士(機械学習)ver 0.0

手書き数字診断士、まずは動くようにしました。 ただ、初っ端から間違えています・・・! 動画 http://webmaking.rei-farms.jp/wp-content/uploads/2018/ …