RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス Web制作 Python

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-データサイエンス, Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

ゲームアプリ運営の分析ノウハウ vol.1 概要編

はじめに 以前から、Twitterなどでこんな悩みを見聞きしていました。 「ゲームアプリを運営する際に、どのような視点で、どのような指標を分析すべきかわからない」というものです。今回はそちらのお悩みに …

[Meisyo]ver0.04へのアップデート

Meisyoがバージョン0.04になりました。 バージョンNo.の基準はありません。(1.00(正式リリース)が遠い) 下記機能が0.04で追加されました。 目的としては、「ユーザがゲームを長く楽しめ …

[Python]グリッドサーチを軽量化し、チューニングしたパラメータも反映する機構を作る

パラメータチューニング方法であるグリッドサーチ、 確かに自動で実行してくれて、すごく便利なのですが問題点があります。 めっちゃ時間がかかる もし、下記のパラメータ設定のモノを全てグリッドサーチしようと …

【教材紹介】ディープラーニングを支える技術

近年目覚ましい発展を遂げた機械学習、ディープラーニング。その概要と技術の使い方を体系的に学ぶにはどの本がいいでしょうか? 私はこの本をお勧めします。 なぜなら、ディープラーニングについて、最先端の研究 …

駆け出しエンジニアは本当にフロントエンドエンジニアを目指すべきなのか

最近、駆け出しエンジニアをTwitter上で数多く見るようになりました。 ただ、揃いも揃って「フロントエンドエンジニア」になりたい(意訳)とプロフィールに書いてあります。 なぜでしょうか。 それは何が …