RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス Web制作 Python

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-データサイエンス, Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]Androidアプリ版 作成案1

「アンドロイドアプリの基本」的な本が届いて3日。だいたいわかった(わかってない)ので一応完成予想図を考えておきましょう。 [トップページ]→[ログイン画面]or[ゲーム画面] ・アプリの利用メリット …

[Meisyo]ver0.04へのアップデート

Meisyoがバージョン0.04になりました。 バージョンNo.の基準はありません。(1.00(正式リリース)が遠い) 下記機能が0.04で追加されました。 目的としては、「ユーザがゲームを長く楽しめ …

[Meisyo] ver 0.31 リリース情報

名将と呼ばれた者達をver 0.31にアップデートします。 更新概要 1・投手配球設定の追加 2・練習試合マッチング方法の修正 3・課金決済の導入 4・その他 5・アンケート 更新詳細 投手配球設定の …

VPSでつくるPythonでのWebアプリ運用環境(連載記事)

今風のWebアプリをリリースするにはレンタルサーバーでは物足りない! 例えば、PythonやRubyに対応しているレンタルサーバーはあまりありません。加えて、データサイエンスや機械学習に強いプログラム …

Jupyter Notebook「7ブロック」でかんたん複数動画のフレームの切り出し(Movie To Image)

はじめに 機械学習のために、動画から画像のデータセットを取り出す必要がありました。 動画 → 画像の変換には多くのフリーソフトはありますが、 今回使おうとした「MOV」ファイルが読み込めるまともなフリ …