RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

Cで簡単プログラミング「二次関数の解」

C言語で簡単なプログラミングをしましょう! 今回は「二次関数の解」です。 ↓Cはコンパイル(機械語に翻訳)が必要なので、以下でコンパイラの「MinGW」をインストールしてください。 C言語およびC++ …

[Meisyo]スマホ対応の進行と新要素の追加準備

名将と呼ばれた者達更新情報です! 現在、下記内容を進めています。 ・スマホ対応 ・選手強化方法の追加(強化合成) ・ミニゲームの追加 ・スマホアプリ作成 スマホ対応の進行 スマホプレイを快適にできるよ …

【教材紹介】XAI(説明可能なAI)

今日では、さまざまなデータが収集され、判断の自動化や数値予測の高度化が行われています。 そのAIの判断、どう説明すればいいかわかりますか? エクセルのようなテーブルデータだけでなく、画像やテキストに対 …

VPSでつくるPythonでのWebアプリ運用環境(連載記事)

今風のWebアプリをリリースするにはレンタルサーバーでは物足りない! 例えば、PythonやRubyに対応しているレンタルサーバーはあまりありません。加えて、データサイエンスや機械学習に強いプログラム …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …