RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

PHP5.5から使える暗号化「password_hash」を「password_compact」を使って以前のバージョンで利用する

PHP最高の暗号化法としてPHP5.5から使える「password_hash」があります。 でもそれを、5.5未満のバージョンで使いたい! 特に私が使っている、さくらインターネットのサーバーはPHP …

[Meisyo]パラメータバランス調整 ver 0.10(a)

パラメータバランスを調整します。 理由としては、ミートが強すぎるからです。 ミートが神の地位を手に入れて早・・・というより、Meisyoが最初からそうだった。 「ミートを上げれば即ち打てる」で、パワー …

[Meisyo]野手起用法設定の導入

野手起用法設定の導入を行いました。 この変更で、 「勝ってる時だけ守備固めを出したい」 「負けてるから投手に代打してチャンスを作りたい」 という要望にお答えしました。 発想は野手起用法設定の導入検討の …

no image

[PHP]PDO、2つ以上の項目からLIKE検索

データベースからPDOを使ってデータを抜き出したい! そして「bindParam」で安全に検索しよう。そうしよう。 しかし、見事にハマりました。/(^o^)\ 解決方法はこちら! $pdo = new …

pythonのnumpyで遊ぶ

異常に奥が深いnumpyで遊びましょう!! import numpy as np 配列の形状変換 a = np.arange(int(np.floor(np.random.rand()*1000))) …