RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]第4回公式戦決勝戦

名将と呼ばれた者達、今年最後の第4回公式戦決勝戦がありました。結果をお伝えします。 (ゲームにログインしていれば、こちらから結果を見ることが出来ます) オモテ: 市立織田高校 チーム総合力:119.5 …

[Meisyo]ゲームのUIを改善し続ける意味とは

1ヶ月に3回はUIが変わっているMeisyo。 何故変え続けているのか。 説明しよう! 今悪いポイント 簡単に言うと新規登録ユーザーさんが定着しない! チュートリアルでも最終ステップまでの到達率が75 …

とても簡単なPythonインストール in Windows10

拍子抜けするほど簡単なPythonインストール。 パソコン初心者のあなたにも簡単にできます! 目次 Pythonとは? Pythonの入手 Pythonのインストール Pythonの動作確認 インスト …

[Meisyo]模擬戦の追加(テスト)vs 大阪桐蔭2018

模擬戦(NPC勝ち抜き戦)を追加しました! 模擬戦のコンセプトは「甲子園歴代優勝校と戦える場を」です。 経験値高め。もらえるアイテムも多いです。 挑戦には練習試合で7日に1回くらい拾える「試合チケット …

駆け出しエンジニアは本当にフロントエンドエンジニアを目指すべきなのか

最近、駆け出しエンジニアをTwitter上で数多く見るようになりました。 ただ、揃いも揃って「フロントエンドエンジニア」になりたい(意訳)とプロフィールに書いてあります。 なぜでしょうか。 それは何が …