RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]大型アップデート予定のお知らせ

名将と呼ばれた者達よりお知らせです。 下記アップデートを予定しています。 1・サーバーの移転(高速化) 今まで練習試合等で非常に時間がかかっていた問題が解消されます。 2・チーム名等の仕様変更 チーム …

駆け出しエンジニアは本当にフロントエンドエンジニアを目指すべきなのか

最近、駆け出しエンジニアをTwitter上で数多く見るようになりました。 ただ、揃いも揃って「フロントエンドエンジニア」になりたい(意訳)とプロフィールに書いてあります。 なぜでしょうか。 それは何が …

(VPSでつくる) Pythonのバージョンを2.7.5から3.6.8にする

連載第四回目です。 CentOS7にインストールされているPythonのバージョンが2.7なので、バージョンアップをします。 そうしないとPythonのアプリが動きません。 なぜなら、Python2と …

[Meisyo] 練習の不均衡是正

練習に不均衡が生じているので、アップデートで改善します。 ちなみに練習の方法自体を変更しようと思っています。 すぐには実装しません。(案が固まっていないです) 基本的に平均が150より大幅に高い(また …

no image

PHPカウンタ(画像版)の公開

PHPのカウンタ(画像版)を公開しました。 表示は以下のようになります。 PHPカウンタ(画像版)でコードも公開しています。ご自由にお使いくださいませ。