RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス SQL データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】10年戦えるデータ分析入門

投稿日:2022年1月16日 更新日:

何度でも言いたいことですが、データ分析をするための技術はSQLが一番良いです。
PythonやRよりも制限が少なく、ビッグデータを扱えるのはSQLです。
分析に触れる第一歩としてこの本はいかがでしょうか?

名称


10年戦えるデータ分析入門

著者

青木峰郎

概要

データ分析にはPythonやRという論調が多いですが、データサイエンス実務ではSQLの出番の方が多いのではないでしょうか。
テラバイト級データはSQLでは対応可能ですが、Pythonだけで分析をすることは困難です。

SQLでは技術的には様々な分析ができます。
本書では多種多様な分析の方法論を、実際に架空データを使いながら分析することでスキルの定着を図ります。

必要知識

パソコンの操作

得られるスキル

SQL, PostgreSQL, select, where, order_by, group_by, join, window関数, DWH, バッチ処理

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, SQL, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

統計的因果探索(LiNGAM)を分析実務観点で詳しく解説

統計的因果推論の一分野である統計的因果探索。 その研究の中で生み出された画期的なモデルLiNGAMの解説を行います。PythonによるLiNGAMの実装については、cdt15/lingamと、応用モデ …

【教材紹介】前処理大全

前処理はデータ分析で重要な事項です。なぜなら、有用な特徴情報を上手く抽出できていなければどんなモデルであれ無用の長物です。ただ、前処理は体系だった学問としては存在せず、実務の中で学んでいくことが多いた …

[社内コンペ] 細胞画像認識

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:2位 精度:68.3% 120枚をクラス1~3で各40枚としていました。 ただし、その数値に合わせに行こうとすること …

[Meisyo] 練習の不均衡是正

練習に不均衡が生じているので、アップデートで改善します。 ちなみに練習の方法自体を変更しようと思っています。 すぐには実装しません。(案が固まっていないです) 基本的に平均が150より大幅に高い(また …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …