RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス SQL データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】10年戦えるデータ分析入門

投稿日:2022年1月16日 更新日:

何度でも言いたいことですが、データ分析をするための技術はSQLが一番良いです。
PythonやRよりも制限が少なく、ビッグデータを扱えるのはSQLです。
分析に触れる第一歩としてこの本はいかがでしょうか?

名称


10年戦えるデータ分析入門

著者

青木峰郎

概要

データ分析にはPythonやRという論調が多いですが、データサイエンス実務ではSQLの出番の方が多いのではないでしょうか。
テラバイト級データはSQLでは対応可能ですが、Pythonだけで分析をすることは困難です。

SQLでは技術的には様々な分析ができます。
本書では多種多様な分析の方法論を、実際に架空データを使いながら分析することでスキルの定着を図ります。

必要知識

パソコンの操作

得られるスキル

SQL, PostgreSQL, select, where, order_by, group_by, join, window関数, DWH, バッチ処理

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, SQL, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

ヒストグラムの階級数を決める方法論

データ分析業務ははっきり言って泥臭い。 分析の設計を行い、可視化を行ってから使えるデータかどうか判断できる。 そもそもそれはデータ分析前の話なのだが。 今回は、可視化の中でもデータの傾向を把握するのに …

統計的因果探索(LiNGAM)を分析実務観点で詳しく解説

統計的因果推論の一分野である統計的因果探索。 その研究の中で生み出された画期的なモデルLiNGAMの解説を行います。PythonによるLiNGAMの実装については、cdt15/lingamと、応用モデ …

分析スキルも大事だけど、思考法の方が大事だよっていう話

データサイエンス関連の仕事をしていて思うのは、 分析スキルも大事だけど、思考法の方が大事だよっていう話です。 最近、会社で教育・OJT関連の業務をしていて切に思うので、つらつらと書いていきます。 まず …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

ゲームデータで学ぶSQL(初級編)

近年のデータサイエンスブームをきっかけに「SQLを学びたい」と思った方へ。 そう思ったところで、壁になってくるのは実データの入手です。 私は職業としてデータサイエンス関連の業務に従事していますが、キレ …