RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス

決定木分析(Python CHAID)を解釈する

投稿日:2020年1月18日 更新日:

意思決定のために使用される決定木分析

Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。
CARTは下記の2点を含め、さまざまな理由から使われていません。

  1. 2分岐のみのため単純すぎる
  2. 過学習させるアルゴリズムのため、小さすぎる区分が出現するので扱いにくい

コードは以下の通り非常に簡単です。

from sklearn import tree
clf = tree.DecisionTreeClassifier(max_depth=3)

(参考:scikit-learn で決定木分析 (CART 法)

実務では各種BIでのCHAID(指標:カイ二乗値)が使われています。
利点としては、以下の2点が大きいです。

  1. 多分岐
  2. 過学習する前に学習を止める

Pythonには決定木(CHAID)の一般的なライブラリがないので、今回はライブラリCHAIDを紹介します。

概要

下記のツイートにまとめています。
まずはREADMEを読んでCHAIDをインストールしてください。
GraphvizとOrcaのインストールは項目Exporting the treeをご覧ください。

Graphvizインストールできない問題の対策

Windows10の場合、pipではなくcondaで入れるとうまく行きました。

conda install graphviz
conda install python-graphviz

Graphvizのbinとdot.exeまでの環境パスは通しました。

CHAIDテストコードにCSVを読み込ませる方法

下記コードで対応可能です。

df = pd.read_csv('sample.csv')

col_answer = 'flag_keizoku'
ndarr = df.drop(columns=col_answer).values
arr = df[col_answer].values

検証

CHAIDとBIツール(今回はSPSS)との差分を検証しました。

検証方法

実データから決定木を出力してみる。

説明変数

ある2週間(1-14日)にログインしたユーザーの総ログイン日数
*開始日を1日目としてカウント
*値=1~14

目的変数

ユーザーごとの15-28日目の継続有無
*ログインしたかどうかで判別
*値=0 or 1

結果概要

SPSSだとある程度グループ化されるのでしきい値の判断はしやすいが、CHAIDはグループ化されず数値が前後してしまうため解釈が難しい。
解釈のために使っているのに、解釈が難しいとは・・・使えないやんって話です。

結果詳細

SPSS


グループは7個できました。
[1], [2], [3-5], [6-8], [9-11], [12, 13], [14]

CHAID


グループは11個できました。
[1], [2], [3], [4], [5, 7], [6, 8], [9, 10], [11], [12], [13], [14]
*個体数nが描写されない問題。コードでの確認は可能ですが、可視化したグラフとしては使いにくい。

結果解釈

前の2週間のログイン日数が多いほど、次の2週間でいずれかの日にログインしている可能性が高い。

うん、そうだね・・・(当たり前)としか言えないのですが、どれくらいの日数ログインしていないと継続しにくいか?を知るには良い結果となります。

14日ログインしている人のうち、3.8%がログインしてないってまずくない?という感じで解釈していきます。

その他には、時系列で比較することで、継続率の効果検証を行うことができます。

仮説:継続を構成するユーザーのうち、どの層のユーザーの継続率が上がったのか?
→ 全体的に上がったのか?
→ 特定のユーザー層にのみ効果があったのか?

のように細かく調査することができます。

このCHAIDの何が問題か

決定木分析はあくまで、いい感じで区分を作り、その結果を解釈して施策に繋げるために行っているので、グループ化があまりに細かく、理解しにくいモノだと使えません。

SPSSに比べ、CHAIDのカイ二乗値は高いですが、適切なグループ化をしていないので、人が使うためには、このCHAIDはめちゃくちゃわかりにくい

結局、意思決定のために分析をしているのに、読み取れない…のようなことが起こりえます。

そういった懸念点があっても、このCHAIDは無料ですので、コスト面を考えると使う価値はありますね。SPSSはライセンス料がかなーり高いので、個人で要因分析する分にはCHAIDで問題ないでしょう。

-Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

【教材紹介】統計的因果探索

ビジネスの因果構造をデータから理解することができれば、マーケティングやセールスで何を試みれば売上や利益が上がるのかがわかります。データから因果構造を推定できる、統計的因果探索の1手法LiNGAMの書籍 …

TensorFlow RNNで詰まるの巻

DeeplearningのフレームワークTensorFlowの学習まで漕ぎ着けました。 CNN(画像認識用と言っても過言ではない)はゼロから始めるディープラーニングでだいたいOK。 何度か読み返してわ …

(VPSでつくる) Socket通信を使ったモダンなチャットアプリをFlaskで作ろう

連載第十三回目です。 今回は、チャットアプリを作っていきたいと思います。 チャットの想定としては、会員制、socket通信で滑らかにチャットできる、データベースにログを残すにしましょう。 ただのチャッ …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

[Meisyo]育成方針の不均衡を減らすための分析

もともと問題視していた育成方針の選択数の不均衡。 なぜそれが起こるのかというと・・・、 使えない(と思いやすい)育成方針があるってことなんですよね。 詳しく見ていきましょう。 各方針の能力上昇(201 …