RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】深層学習 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

投稿日:2022年1月7日 更新日:

米国大学のコンピューターサイエンスの講義を無料で、かつ日本語で公開されている教材がありましたので共有いたします。

名称

深層学習 DS-GA 1008 · 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

主催

ニュー欲大学データ・サイエンス・センター
Yann LeCun & Alfredo Canziani

概要

深層学習の最新技術(基礎・応用)について無料で学ぶことができる。
応用技術のベースとして、教師あり・教師なし深層学習、ベクトル埋め込みや距離学習の方法、画像認識で重要な畳み込みニューラルネットワーク(CNN)、時系列処理で重要な再帰型ニューラルネットワーク(RNN)、近年の自然言語処理の躍進を支えてきたAttentionなどを学ぶ。応用技術として、画像認識、BERTをはじめとした自然言語処理、グラフ構造ネットワークを予測するGCNなどを、理論だけではなくPythonのコードも記載されているため、動かしながら学ぶことができる。

必要知識

基礎的な機械学習及び数学の知識
・機械学習の流れが分かっていればOK
目的設定 → データ準備 → モデル設定 → 学習 → 検証
・大学教養課程の線形代数や微分
特に偏微分がふんだんに使われる

得られるスキル

深層学習, CNN, RNN, GCN, EBM, Attention, BERT, Auto Encoder

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

自然言語処理×教師なし学習での温故知新 PythonでBERT-MaskedLM実装

はじめに 自然言語処理(BERT、GPT-3)および画像認識(ViT)等で以前のState of The Artモデルを超える精度を発揮したTransformer(元論文:Attention Is A …

「実践!Chainerとロボットで学ぶディープラーニング」を作ってみた

実践!Chainerとロボットで学ぶディープラーニングを購入しました。 単純にロボを動かすのは楽しいです。 周りに意外と買った人が居ないようなので、レビューを書きました。 所感 ちょっとお高いけど、土 …

【教材紹介】10年戦えるデータ分析入門

何度でも言いたいことですが、データ分析をするための技術はSQLが一番良いです。 PythonやRよりも制限が少なく、ビッグデータを扱えるのはSQLです。 分析に触れる第一歩としてこの本はいかがでしょう …

[Meisyo+] データ分析その1 能力値ベースの打率予測

監督視点の野球ゲーム Meisyo+でデータが貯まってきたので、打率の予測をしてみました。 打率は高ければ高いほどいいですが、実際のところどの能力値を重要視していいかわかりません。 そのため、今回はど …

ゲームアプリ運営の分析ノウハウ vol.1 概要編

はじめに 以前から、Twitterなどでこんな悩みを見聞きしていました。 「ゲームアプリを運営する際に、どのような視点で、どのような指標を分析すべきかわからない」というものです。今回はそちらのお悩みに …