RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】BERTによる自然言語処理

投稿日:2022年1月13日 更新日:

自然言語処理の応用モデルであるBERTを今すぐに使いたい、機械学習の概要を知っている担当者レベルに向けた書籍を紹介します。

名称


BERTによる自然言語処理

著者

ストックマーク株式会社
近江崇宏、金田健太郎、森長誠、江間見亜利

概要

自然言語処理で難易度の高いタスクがあり、BERTを使うことでどうにかしたいという担当者向けの技術的な書籍です。
機械学習や自然言語処理の説明はそこそこに、BERTを自分で使えるようにするために色々なレクチャーが行われます。

必要知識

基本的な機械学習の知識(データ準備→学習→検証等)

得られるスキル

Python, Pytorch, BertModel, Tokenizer, 事前学習, ファインチューニング, 文章の穴埋め, 文章分類, 固有表現抽出, 類似文章分類

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】機械学習を解釈する技術

多くの企業で導入されるようになってきた機械学習。 その機械の判断基準、本当にわかっていますか? 今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法 …

Flask-Babelを使って、Pythonアプリで多言語対応を行う

Pythonで多言語対応してみたいなーと思っていました。 思っていましたが、実際になかなか使うタイミングがない・・・。 今回自作ゲームでユーザー数の増加がみられ、かつ海外からのアクセスも複数確認できた …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

TensorFlowまで到達

ちょいちょい数式に詰まりながらも、DeeplearningのフレームワークTensorFlowの学習まで漕ぎ着けました。 一番困ったのは「説明無しで数式使うよ!」 マジやめてください・・・まあ勉強する …

【教材紹介】深層学習 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

米国大学のコンピューターサイエンスの講義を無料で、かつ日本語で公開されている教材がありましたので共有いたします。 名称 深層学習 DS-GA 1008 · 2020年度春学期 · ニューヨーク大学デー …