RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンスおすすめ教材紹介【Skill Stacks】 Python データサイエンス

【教材紹介】BERTによる自然言語処理

投稿日:2022年1月13日 更新日:

自然言語処理の応用モデルであるBERTを今すぐに使いたい、機械学習の概要を知っている担当者レベルに向けた書籍を紹介します。

名称


BERTによる自然言語処理

著者

ストックマーク株式会社
近江崇宏、金田健太郎、森長誠、江間見亜利

概要

自然言語処理で難易度の高いタスクがあり、BERTを使うことでどうにかしたいという担当者向けの技術的な書籍です。
機械学習や自然言語処理の説明はそこそこに、BERTを自分で使えるようにするために色々なレクチャーが行われます。

必要知識

基本的な機械学習の知識(データ準備→学習→検証等)

得られるスキル

Python, Pytorch, BertModel, Tokenizer, 事前学習, ファインチューニング, 文章の穴埋め, 文章分類, 固有表現抽出, 類似文章分類

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンスおすすめ教材紹介【Skill Stacks】, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Python] PDFファイルから文字抽出

「大量にPDFファイルがあり、そこから文字を抽出したい。」 そんなお悩みにPython(プログラム言語)でお答えします! まずは、PDFの種類を確認し、それぞれに対応コードを例示します。 * 今回、構 …

(VPSでつくる) Python仮想環境venvの導入

連載第五回目です。 前回の4. Pythonのバージョンを3.Xにする記事で、Pythonのバージョン管理をディレクトリごとに行えるようになりました。 ただし、アプリごとにモジュールのバージョンは変え …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

[Meisyo+] データ分析その1 能力値ベースの打率予測

監督視点の野球ゲーム Meisyo+でデータが貯まってきたので、打率の予測をしてみました。 打率は高ければ高いほどいいですが、実際のところどの能力値を重要視していいかわかりません。 そのため、今回はど …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ

「練習ごとに難易度が違いすぎるんですけど!!」という不満は把握しています。 ただ、これまでそこには触れてきませんでした。 なぜなら・・・まだデータ取れてないし、分析できないでしょ(言い訳) ・・・怠慢 …