RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンスおすすめ教材紹介【Skill Stacks】 Python データサイエンス

【教材紹介】BERTによる自然言語処理

投稿日:2022年1月13日 更新日:

自然言語処理の応用モデルであるBERTを今すぐに使いたい、機械学習の概要を知っている担当者レベルに向けた書籍を紹介します。

名称


BERTによる自然言語処理

著者

ストックマーク株式会社
近江崇宏、金田健太郎、森長誠、江間見亜利

概要

自然言語処理で難易度の高いタスクがあり、BERTを使うことでどうにかしたいという担当者向けの技術的な書籍です。
機械学習や自然言語処理の説明はそこそこに、BERTを自分で使えるようにするために色々なレクチャーが行われます。

必要知識

基本的な機械学習の知識(データ準備→学習→検証等)

得られるスキル

Python, Pytorch, BertModel, Tokenizer, 事前学習, ファインチューニング, 文章の穴埋め, 文章分類, 固有表現抽出, 類似文章分類

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンスおすすめ教材紹介【Skill Stacks】, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo+] データ分析その1 能力値ベースの打率予測

監督視点の野球ゲーム Meisyo+でデータが貯まってきたので、打率の予測をしてみました。 打率は高ければ高いほどいいですが、実際のところどの能力値を重要視していいかわかりません。 そのため、今回はど …

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …

ヒストグラムの階級数を決める方法論

データ分析業務ははっきり言って泥臭い。 分析の設計を行い、可視化を行ってから使えるデータかどうか判断できる。 そもそもそれはデータ分析前の話なのだが。 今回は、可視化の中でもデータの傾向を把握するのに …

ゲームアプリ運営の分析ノウハウ vol.3 この状態のアプリはやべえ編

はじめに 皆さんお久しぶりです。れいです。 近しい友人(アプリ運営を長年経験)が転職することになり、色々話してみましたがやべえ状態ってあるんやなと思ったので共有します。 これは…他山の石としてください …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …