RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】機械学習を解釈する技術

投稿日:

多くの企業で導入されるようになってきた機械学習。
その機械の判断基準、本当にわかっていますか?

今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法を解説した書籍を紹介します。

名称


機械学習を解釈する技術

著者

森下光之助

概要

地味な表紙をしている本書。
ただ、内容は今後とても重要だと考えられます。
なぜなら、新聞でよく出てくるようなAIの解釈性を担っているのは、ほとんどがこれらの技術だと言って過言ではありません。

特徴量の重要性、変数と予測値の関係性、個別サンプルの予測説明。
そして、それらをまとめて確認できるSHAP(SHapley Additive exPlanations)。
テーブルデータに利用するそれらの方法を、ライブラリと簡単な数式で読み解きます!

必要知識

機械学習の基礎的な知識
高校数学レベルの数式を読む力

得られるスキル

テーブルデータに対するXAI理論
Python、機械学習の解釈性の定義、線形会期モデル、Permutation Feature Importance、Partial Dependence、Individual Conditional Expectation、SHAP(SHapley Additive exPlanations)

こちらは、テーブルデータを重点的に説明した書籍です。いろいろなデータの大局的な説明が必要な場合は、【教材紹介】XAI(説明可能なAI)をご覧ください。
その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


  1. […] こちらは、【教材紹介】機械学習を解釈する技術に比べ、データの種別ごとのXAIなど大局的な説明が多いです。 その他の教材紹介ページはこちら → Skill Stacks […]

comment

メールアドレスが公開されることはありません。

関連記事

【教材紹介】深層学習 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

米国大学のコンピューターサイエンスの講義を無料で、かつ日本語で公開されている教材がありましたので共有いたします。 名称 深層学習 DS-GA 1008 · 2020年度春学期 · ニューヨーク大学デー …

野球ゲームデータで遊ぶデータサイエンス(正規分布の検定編)

名将と呼ばれた者達のデータを使って、データサイエンスを学んでみましょう! 生きた&整えられたデータは中々公開されていないので、今回の野球ゲームのデータは分析に適していると思われます。もちろん、Kagg …

(VPSでつくる) Pythonのバージョンを2.7.5から3.6.8にする

連載第四回目です。 CentOS7にインストールされているPythonのバージョンが2.7なので、バージョンアップをします。 そうしないとPythonのアプリが動きません。 なぜなら、Python2と …

[Python] tensorflow_datasetsで詰まったとき

「図解速習 DEEPLEARNING」で自己環境(Windows)で学習していました。 tensorflow_datasetsって何だ・・・? import tensorflow_datasets a …

分析スキルも大事だけど、思考法の方が大事だよっていう話

データサイエンス関連の仕事をしていて思うのは、 分析スキルも大事だけど、思考法の方が大事だよっていう話です。 最近、会社で教育・OJT関連の業務をしていて切に思うので、つらつらと書いていきます。 まず …