RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python

[python]MNISTの学習モデルを保存し、テストする

投稿日:

機械学習のHello World的なMNISTにて、学習モデルを保存し、実行する際のメモ。

用意するもの

PC
コマンドプロンプト
インストール(python、sklearn、numpy)

学習時のコード

from sklearn import datasets
from sklearn import metrics
from sklearn import svm
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.externals import joblib

# データセットロード
dataset = datasets.load_digits()
#全データの最大値、全データ数確認
#print(np.amax(dataset.data)) # 最大値16
#print(dataset.data.shape[0]) # 全データ数

# 設定用
x = dataset.data / 16 # 最大値を1にする
y = dataset.target

# 訓練データ/テストデータの分割
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)

# モデル作成
model = svm.LinearSVC() # SVC

# 学習
model.fit(x_train, y_train)

# 推定
y_pred = model.predict(x_test)

# 評価
score = metrics.accuracy_score(y_test, y_pred)
print("SVC Score : {0:.4f}" . format(score))

# 間違い探し
co_mat = metrics.confusion_matrix(y_test, y_pred)
print(co_mat)

# 学習済みモデルの作成
joblib.dump(model, "test.pkl", compress=True)

呼び出し時のコード

from sklearn.externals import joblib

def predict(parameters):
    model = joblib.load('./test.pkl')
    params = parameters.reshape(1,-1)
    pred = model.predict(params)
    return pred

pred = predict(x) # xは入力値、未設定のためエラー出ます(28x28)
print(pred) # 結果出力

他のモデルを使う場合

「学習時のコード」の3行目と22行目を変更してください。

from sklearn import svm
model = svm.LinearSVC() # SVC

これをSVC以外の・・・分類に突っ込んであげましょう。
ロジスティック などですね。
k-meansは教師なしなので使い方が違います。

回帰(数値分類)ではできないので注意してください。

まとめ

意外と簡単に学習→モデル保存→出力できました。
慣れてない人は、コードに慣れてくるまでは写経ですね。

・・・とはいえ私も、「学習時のコード」のdatasetの最大値を出すだけで15分かかりました…。

-Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

no image

[PHP]まとめ読みをPSRで改良する(1)

今回の改良対象 → ミニ四駆まとめサイト なぜやるのか? PHPのバージョンアップによる速度の向上 一番はこれでしょう。 今のはPHP5.2で動いています。 1割から5割の速度向上が見込まれます。 1 …

[Meisyo]練習試合のバグ修正

練習試合のバグ修正を修正しました。 練習試合で大阪桐蔭2018(NPC)と当たるってマジ? 久々のバグ報告(ありがたい!)で、なんでこうなるかなーと思ってみたら、 下記のようにしたつもりが・・・ $v …

no image

[PHP]まとめ読みをPSRで改良する(4)

まとめ読みをPSRで改良する(3)から約一週間。 こんがらがっていた頭の中がすっきりして、なんとなくですがオブジェクト指向がわかってきたような気がします。 オブジェクト指向で大事そうなのは、機構(機能 …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

no image

Cで簡単プログラミング「二次関数の解」

C言語で簡単なプログラミングをしましょう! 今回は「二次関数の解」です。 ↓Cはコンパイル(機械語に翻訳)が必要なので、以下でコンパイラの「MinGW」をインストールしてください。 C言語およびC++ …

筆者情報

名将と呼ばれた者達(Meisyo)公式ブログ
ゆっくりとした時間間隔で進行する高校野球チーム育成シミュレーションゲーム。
個性豊かな選手たちを育成し、監督としてチームを優勝に導こう!

ご連絡はTwitter(R@おいす)でしていただけると、すぐ反応できます。

メインサイト:Rの考え方

気に入ったらクリックしてね!