RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】すぐわかる統計処理の選び方

投稿日:2022年1月15日 更新日:

データは揃った。ただ、どんな分析をすればいいのかわからない。そんな人に向けて、データのパターン別に分析方法をレクチャーする本を紹介します。

名称


すぐわかる統計処理の選び方

著者

石村貞夫・石村光資郎

概要

この本を利用して、統計処理はコンピュータに任せ、われわれは研究や調査に集中しましょう!と銘打って作成された本書。
元々は統計学者ではない研究者向けに書かれた本ではあるが、マーケターや販売管理者、初めて分析を行う初学者であれば本書は役に立ちます。

必要知識

なし

得られるスキル

記述統計量, 単変量解析, 多群分析, 多変量解析, 対応ある多群の分析, 相関, 多元配置分析, 時系列分析, アンケート分析

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]今後やっていきたいこと

Meisyoで今年中にやっておきたいこと これさえやればDAU(日ごとのアクティブユーザ)が100人を超えるのでは?と思います。 まずは目的・内容を書いて、理由と考察を書きます。 目的 ユーザがゲーム …

[Python]グリッドサーチを軽量化し、チューニングしたパラメータも反映する機構を作る

パラメータチューニング方法であるグリッドサーチ、 確かに自動で実行してくれて、すごく便利なのですが問題点があります。 めっちゃ時間がかかる もし、下記のパラメータ設定のモノを全てグリッドサーチしようと …

統計的因果探索(LiNGAM)を分析実務観点で詳しく解説

統計的因果推論の一分野である統計的因果探索。 その研究の中で生み出された画期的なモデルLiNGAMの解説を行います。PythonによるLiNGAMの実装については、cdt15/lingamと、応用モデ …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …