RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】データ解析の実務プロセス入門

投稿日:2022年1月18日 更新日:

「データ分析を会社で初めて行いたい」「データ分析を任されたがどうすればいいかよく分からない」というときはこちらの書籍がおすすめ。良いデータ分析を構成する分析プロセスからデータの収集方法、探索的データ解析(EDA)、運用までをカバーする珍しい書籍です。

名称


データ解析の実務プロセス入門

著者

あんちべ

概要

難しい用語なしに、データ分析のプロセス全体を俯瞰した書籍。
他の書籍ではあまり見かけないが、実務では重要な運用や分析事例についての言及が多く載っている。
2人の登場人物の対話形式で進むため、さくさく読むことができる。

必要知識

なし

得られるスキル

データ分析プロセスの概要理解, データ収集, データ測定, 探索的データ解析の概要, 運用, KPI, テキストマイニング, ビジネスデータ分析事例

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

監督たちの甲子園(v1.3.5) 新規ユーザー分析

私は運営するゲームの分析を日常的に行い、機能の改善を行っています。 元々ゲーム運営のアナリスト(コンサルタント)をしていたので、ゲームの分析はチョットワカルかもしれません。 今回は、ゲームの状況をかん …

[社内コンペ] 間取り予測

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:3位 精度:60.7% 今回は学習データが12,000件ほどあり、ある程度多いデータ量での学習ができました。 学習デ …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

【教材紹介】ディープラーニングを支える技術

近年目覚ましい発展を遂げた機械学習、ディープラーニング。その概要と技術の使い方を体系的に学ぶにはどの本がいいでしょうか? 私はこの本をお勧めします。 なぜなら、ディープラーニングについて、最先端の研究 …

[Python]グリッドサーチを軽量化し、チューニングしたパラメータも反映する機構を作る

パラメータチューニング方法であるグリッドサーチ、 確かに自動で実行してくれて、すごく便利なのですが問題点があります。 めっちゃ時間がかかる もし、下記のパラメータ設定のモノを全てグリッドサーチしようと …