RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】機械学習のための「前処理」入門

投稿日:2022年1月21日 更新日:

予測のためのデータ前処理(加工)にはさまざまな手法があります。本書では、非構造化データを中心に「予測するために」データ分析を進めていきます。前処理と銘打たれていますが、どちらかというとデータ加工のテクニックを記述した本です。

名称


機械学習のための「前処理」入門

著者

足立悠

概要

構造化データ、非構造化データにはデータの前処理(加工)という難題があります。非常に手間暇がかかり、かつ分析モデルの精度に大きく関わってきます。今回の書籍では、非構造化データを中心にデータ加工から予測モデルの構築まで、分析フレームワークCRISP-DMをベースに話を進めます。

この書籍は前処理というより、加工の本だと思われる。下記の定義の前処理なら、必要知識にある前処理大全がおすすめ。

必要知識

【教材紹介】前処理大全

得られるスキル

Python, 欠損値補完, 不均衡データの均衡化, 正規化, クラスタリング, 次元削減
画像データの加工, 時系列データの加工, 自然言語データの加工

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

手書き数字診断士(機械学習)を作り始めました

Python(Flask)+機械学習の勉強がてら、「手書き数字診断士」を作っています。 元ネタは2chの中小企業診断士です。 「う~ん、これは中小企業!w」 やること 1・index.html  1. …

【教材紹介】Interpretable Machine Learning(邦訳:解釈可能な機械学習)

機械学習の解釈可能性については、近年さらに重要視されています。 なぜでしょうか?それは、この書籍に記載されています。 このWebサイト(なんと無料!)では、説明性の性質の違いや、人間が考える良い説明と …

【教材紹介】データ解析の実務プロセス入門

「データ分析を会社で初めて行いたい」「データ分析を任されたがどうすればいいかよく分からない」というときはこちらの書籍がおすすめ。良いデータ分析を構成する分析プロセスからデータの収集方法、探索的データ解 …

Pandasに行を追加する時はappendを使わず、コレを使おう

はじめに 筆者は仕事柄Pythonのコードレビューをすることが多いのですが、まれにPandasに行を追加する最適な方法で相談されることがあるので、今回書きました。 まず言えることは、Pandasの標準 …

(VPSでつくる) Python(Flask)でMariaDB(MySQL)へ接続できるアプリをもっと読みやすく改良してみよう

連載第十二回目です。 前回の記事で、Python3.6.8+FlaskでMariaDBに接続・データベースを編集するアプリを動作させる設定を行い、動作確認しました。 今回は、機能は前回と全く同じアプリ …