RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンスおすすめ教材紹介【Skill Stacks】 Python データサイエンス

【教材紹介】機械学習を解釈する技術

投稿日:

多くの企業で導入されるようになってきた機械学習。
その機械の判断基準、本当にわかっていますか?

今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法を解説した書籍を紹介します。

名称


機械学習を解釈する技術

著者

森下光之助

概要

地味な表紙をしている本書。
ただ、内容は今後とても重要だと考えられます。
なぜなら、新聞でよく出てくるようなAIの解釈性を担っているのは、ほとんどがこれらの技術だと言って過言ではありません。

特徴量の重要性、変数と予測値の関係性、個別サンプルの予測説明。
そして、それらをまとめて確認できるSHAP(SHapley Additive exPlanations)。
テーブルデータに利用するそれらの方法を、ライブラリと簡単な数式で読み解きます!

必要知識

機械学習の基礎的な知識
高校数学レベルの数式を読む力

得られるスキル

テーブルデータに対するXAI理論
Python、機械学習の解釈性の定義、線形会期モデル、Permutation Feature Importance、Partial Dependence、Individual Conditional Expectation、SHAP(SHapley Additive exPlanations)

こちらは、テーブルデータを重点的に説明した書籍です。いろいろなデータの大局的な説明が必要な場合は、【教材紹介】XAI(説明可能なAI)をご覧ください。
その他の教材紹介ページはこちら → Skill Stacks

-データサイエンスおすすめ教材紹介【Skill Stacks】, Python, データサイエンス

執筆者:


  1. […] こちらは、【教材紹介】機械学習を解釈する技術に比べ、データの種別ごとのXAIなど大局的な説明が多いです。 その他の教材紹介ページはこちら → Skill Stacks […]

comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

pythonのnumpyで遊ぶ

異常に奥が深いnumpyで遊びましょう!! import numpy as np 配列の形状変換 a = np.arange(int(np.floor(np.random.rand()*1000))) …

【教材紹介】戦略的データサイエンス入門

ビジネスサイド(経営・営業・人事やエンジニアリングマネージャーなど)のあなたが1冊でデータサイエンスの概要を理解したい。 そんな時にはこの1冊でOK、分からない単語が出てくれば辞書としても使えるこの一 …

ゲームアプリ運営の分析ノウハウ vol.2 新規登録者編

はじめに アプリ開発者によくある悩み・・・登録者がゲームを続けてくれません!!。 続けてくれないをより細かく言うと、(1)コンテンツを一通りプレイしてもらいたいのか、(2)毎日プレイしてほしいのかによ …

【教材紹介】データ解析の実務プロセス入門

「データ分析を会社で初めて行いたい」「データ分析を任されたがどうすればいいかよく分からない」というときはこちらの書籍がおすすめ。良いデータ分析を構成する分析プロセスからデータの収集方法、探索的データ解 …

監督たちの甲子園(v1.3.5) 新規ユーザー分析

私は運営するゲームの分析を日常的に行い、機能の改善を行っています。 元々ゲーム運営のアナリスト(コンサルタント)をしていたので、ゲームの分析はチョットワカルかもしれません。 今回は、ゲームの状況をかん …