RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】ディープラーニングを支える技術

投稿日:

近年目覚ましい発展を遂げた機械学習、ディープラーニング。その概要と技術の使い方を体系的に学ぶにはどの本がいいでしょうか?

私はこの本をお勧めします。

なぜなら、ディープラーニングについて、最先端の研究をリードする日本で数少ないユニコーン企業、Preferred NetworksのCOO(2022年2月現在)である岡野原さんが書いており、非常にわかりやすく、網羅的に書かれた本だからです。ある程度実務経験を積んだ私でさえ、学びなおしに最適なほど網羅性があります。

では紹介します。

名称


ディープラーニングを支える技術

著者

岡野原大輔

概要

ディープラーニングを支える周辺技術について、人工知能の歴史を紐解き、基礎~発展まで網羅的に説明します。

もちろん、機械学習の基礎についても触れます。

そこで重要な役割を果たした人や技術について、絵をふんだんに使った本です。数式もたまに出てきます。

これを読むことで、ディープラーニングでどのようなことができそうなのかなど、新規サービスについても考察を深めることができます。

必要知識

高校レベルの数学の知識

得られるスキル

基礎知識, 機械学習, ディープラーニング, 表現学習, 画像認識, 音声認識, 自然言語処理, 正規化層, スキップ接続, 注意機構(Attention)

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】前処理大全

前処理はデータ分析で重要な事項です。なぜなら、有用な特徴情報を上手く抽出できていなければどんなモデルであれ無用の長物です。ただ、前処理は体系だった学問としては存在せず、実務の中で学んでいくことが多いた …

ゲームアプリ運営の分析ノウハウ vol.3 この状態のアプリはやべえ編

はじめに 皆さんお久しぶりです。れいです。 近しい友人(アプリ運営を長年経験)が転職することになり、色々話してみましたがやべえ状態ってあるんやなと思ったので共有します。 これは…他山の石としてください …

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …

手書き数字診断士(機械学習)ver 0.1 K近傍法を使ってみた

手書き文字の判定精度が全然上がらないので、他の手法を試してみました。 sklearnの開発元によると、以下の方法が良いらしい・・・。 なるほど!SVCで上手くいかない → K近傍法だな! 早速実装 p …

[社内コンペ] 間取り予測

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:3位 精度:60.7% 今回は学習データが12,000件ほどあり、ある程度多いデータ量での学習ができました。 学習デ …