RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】機械学習のための「前処理」入門

投稿日:2022年1月21日 更新日:

予測のためのデータ前処理(加工)にはさまざまな手法があります。本書では、非構造化データを中心に「予測するために」データ分析を進めていきます。前処理と銘打たれていますが、どちらかというとデータ加工のテクニックを記述した本です。

名称


機械学習のための「前処理」入門

著者

足立悠

概要

構造化データ、非構造化データにはデータの前処理(加工)という難題があります。非常に手間暇がかかり、かつ分析モデルの精度に大きく関わってきます。今回の書籍では、非構造化データを中心にデータ加工から予測モデルの構築まで、分析フレームワークCRISP-DMをベースに話を進めます。

この書籍は前処理というより、加工の本だと思われる。下記の定義の前処理なら、必要知識にある前処理大全がおすすめ。

必要知識

【教材紹介】前処理大全

得られるスキル

Python, 欠損値補完, 不均衡データの均衡化, 正規化, クラスタリング, 次元削減
画像データの加工, 時系列データの加工, 自然言語データの加工

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

Skill Stacksの作成にあたって

Skill Stacksを書いている理由は、本をはじめとした教材の紹介サイトを作ろうと思っており、それが実際に求められていそうかを確認するためのテストマーケティング的な位置づけです。 「なぜ必要か?」 …

Python可読性高すぎてすごい

コード ちょっと詰めて書いていますが year = int(input("あなたの生まれ年を西暦4桁年で表記してください:")) eto_list = (‘子’, ‘丑’, ‘寅’ …

Pandas DataFrameでの表示列・行をすべて表示する(表示制限を解除する)

Jupyter NotebookでPandasのDataFrameを表示する際、行数・列数が多すぎると省略されてしまう場合があります。 制限を解除しましょう。 pd.set_option(‘displ …

【教材紹介】データ解釈学入門

「データ分析の初心者はこれを読むべし」と思う本です。なぜなら、データの解釈・観測をはじめデータサイエンスは難しい事柄が多く、かつビジネスで分析をする際に、初心者をはじめ分析者全員が陥りやすい罠があるか …

手書き数字診断士(機械学習)を作り始めました

Python(Flask)+機械学習の勉強がてら、「手書き数字診断士」を作っています。 元ネタは2chの中小企業診断士です。 「う~ん、これは中小企業!w」 やること 1・index.html  1. …