RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンスおすすめ教材紹介【Skill Stacks】 Python データサイエンス

【教材紹介】機械学習のための「前処理」入門

投稿日:2022年1月21日 更新日:

予測のためのデータ前処理(加工)にはさまざまな手法があります。本書では、非構造化データを中心に「予測するために」データ分析を進めていきます。前処理と銘打たれていますが、どちらかというとデータ加工のテクニックを記述した本です。

名称


機械学習のための「前処理」入門

著者

足立悠

概要

構造化データ、非構造化データにはデータの前処理(加工)という難題があります。非常に手間暇がかかり、かつ分析モデルの精度に大きく関わってきます。今回の書籍では、非構造化データを中心にデータ加工から予測モデルの構築まで、分析フレームワークCRISP-DMをベースに話を進めます。

この書籍は前処理というより、加工の本だと思われる。下記の定義の前処理なら、必要知識にある前処理大全がおすすめ。

必要知識

【教材紹介】前処理大全

得られるスキル

Python, 欠損値補完, 不均衡データの均衡化, 正規化, クラスタリング, 次元削減
画像データの加工, 時系列データの加工, 自然言語データの加工

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンスおすすめ教材紹介【Skill Stacks】, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Python] ディープラーニングのモデル「VGG16」を使って画像認識をし、判断した理由の可視化をする。

今日はデータ分析から趣向を変えて画像認識を行います。 やることは簡単。 1.撮った写真を使って画像認識させ、何が写っているか判断させる。 2.何が写っているかを判断した理由(位置)を可視化する。 以上 …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

【Meisyo】ステータスバランス調整

はじめに Meisyo+ お知らせ ステータスバランス調整予定のお知らせの詳細を記載します。 下記の順番で対処を行いました。 ②本塁打率が高すぎる。 ①打率平均が低すぎる。 ③長打(二塁打・三塁打)が …

ゲームデータで学ぶSQL(初級編)

近年のデータサイエンスブームをきっかけに「SQLを学びたい」と思った方へ。 そう思ったところで、壁になってくるのは実データの入手です。 私は職業としてデータサイエンス関連の業務に従事していますが、キレ …

【教材紹介】機械学習を解釈する技術

多くの企業で導入されるようになってきた機械学習。 その機械の判断基準、本当にわかっていますか? 今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法 …