RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]練習に実施例を追加

練習がさらにわかりやすくなりました。 赤枠の「ミニゲーム実施例」をクリックすると・・・ その練習のミニゲームを実際に行った動画を見ることができます。 「こんな感じでやるのか~」と目標になるのかな?と思 …

Flask-Babelを使って、Pythonアプリで多言語対応を行う

Pythonで多言語対応してみたいなーと思っていました。 思っていましたが、実際になかなか使うタイミングがない・・・。 今回自作ゲームでユーザー数の増加がみられ、かつ海外からのアクセスも複数確認できた …

[Meisyo]ビッグデータから学ぶ試合の基礎設計5

ここでは、「どのパラメータが打率等にどれくらい関係するのか」を理解することで強いチームを作る指針を記載しておきます。 [Meisyo]ビッグデータから学ぶ試合の基礎設計4の詳細版です。 今回は、右打と …

【教材紹介】異端の統計学ベイズ

今回はベイズ統計学の歴史書です。今でこそ、頻度論の統計学とベイズ統計学などをひとまとめにして統計学と言われていますが、そこに至るまでに何があったのか?そちらを詳細に記述する500ページ越えの大作です。 …

no image

iPhoneアプリを開発してみよう

最近ずっとiPhoneアプリで遊んでて、 「なんか頭使うゲームないな?」と思い(”本質的には育成ゲー”が多すぎてゲンナリ) 「複数人でのRTS」があればな~と。 「他ゲーに文句 …