RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス Web制作 Python

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-データサイエンス, Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …

no image

cakePHPの取り扱いを開始しました

ご無沙汰しております。 とりあえず初心者のためのCakePHP2.0 プログラミング入門でcakePHPを使えるようにして、 ミニ四駆ブログまとめを改良して、 野球ゲーム(baseball onlin …

【教材紹介】統計的因果探索

ビジネスの因果構造をデータから理解することができれば、マーケティングやセールスで何を試みれば売上や利益が上がるのかがわかります。データから因果構造を推定できる、統計的因果探索の1手法LiNGAMの書籍 …

【教材紹介】Python機械学習プログラミング(第3版)* 文量多め

今回の書籍は内容理解する難易度が高めですが、機械学習の基礎(用語・位置付け・アルゴリズム)が網羅できる、Pythonでの機械学習を学ぶためのおすすめ教材を紹介します。 正式名(ISBNコード) [第3 …

[Meisyo]投手交代アルゴリズムの変更

要望 投手起用と代打について現状自分は投手起用をこんな感じにしていて 代打は6回以降にしたいのですが投手の数の関係で9回以降に代打を起用された場合に野手が登板することになり困っています。代打起用を何回 …