RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】Python機械学習プログラミング(第3版)* 文量多め

今回の書籍は内容理解する難易度が高めですが、機械学習の基礎(用語・位置付け・アルゴリズム)が網羅できる、Pythonでの機械学習を学ぶためのおすすめ教材を紹介します。 正式名(ISBNコード) [第3 …

Webサイトの更新を続ける秘訣

何かを続けることって辛くありませんか? 実は・・・続けることに努力は必要ありません。 あなた自身に対して合う方法を設定すれば、うまくいきます。 更新を続ける秘訣 報酬を設定する やる時間を決める やら …

no image

PHPで祝日判定

PHP 祝日判定で検索すると、「GoogleカレンダーAPIで祝日を取得する」ばかりです。 しかし、GoogleカレンダーAPIは抜け落ちている祝日が存在することが知られています。 今回は、抜け落ちが …

[Meisyo]ビッグデータから学ぶ試合の基礎設計2

名将と呼ばれた者達、めちゃくちゃソースコードが長い(この記事) ここでは、「どのパラメータが打率等にどれくらい関係するのか」を理解することで強いチームを作る指針を記載しておきます。 というわけで27- …

(VPSでつくる) Nginx+PHPでHello World

連載第七回目です。 今回はGUIでデータベースを操作できるphpMyAdminのインストール準備のために、PHPという言語をインストールします。 この記事は、VPSで作るPythonでのWebアプリ運 …