RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

独自ドメイン取得

ねんがんの どくじどめいんを しゅとくしたぞ!( ^^) 「http://rei-farms.jp/」を独自ドメインとして取得しました。 ブログは「http://rei-farms.jp/webmak …

[Meisyo]ver0.04へのアップデート

Meisyoがバージョン0.04になりました。 バージョンNo.の基準はありません。(1.00(正式リリース)が遠い) 下記機能が0.04で追加されました。 目的としては、「ユーザがゲームを長く楽しめ …

[Python] tensorflow_datasetsで詰まったとき

「図解速習 DEEPLEARNING」で自己環境(Windows)で学習していました。 tensorflow_datasetsって何だ・・・? import tensorflow_datasets a …

【教材紹介】10年戦えるデータ分析入門

何度でも言いたいことですが、データ分析をするための技術はSQLが一番良いです。 PythonやRよりも制限が少なく、ビッグデータを扱えるのはSQLです。 分析に触れる第一歩としてこの本はいかがでしょう …

[Meisyo] ver 0.32 リリース情報と2020年4月以降の開発予定について

名将と呼ばれた者達をver 0.32にアップデートします。 更新概要 1・探索の追加 2・探索の追加に伴うゲームバランスの再調整 更新詳細 探索の追加 アイテムを発掘できる動的なゲームシステムを追加し …