RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス Web制作 Python

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-データサイエンス, Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]SQLでバグ発掘

「監督の指導能力が上がらない」という情報が入ったので、 ・バグの修正 ・SQLでバグっているIDの方を検索→チケットプレゼント を行います。 該当能力:  指導能力(体力)  ・・・ちなみに投手以外で …

[社内コンペ] 間取り予測

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:3位 精度:60.7% 今回は学習データが12,000件ほどあり、ある程度多いデータ量での学習ができました。 学習デ …

(VPSでつくる) Nginx+PHPでHello World

連載第七回目です。 今回はGUIでデータベースを操作できるphpMyAdminのインストール準備のために、PHPという言語をインストールします。 この記事は、VPSで作るPythonでのWebアプリ運 …

pythonのnumpyで遊ぶ

異常に奥が深いnumpyで遊びましょう!! import numpy as np 配列の形状変換 a = np.arange(int(np.floor(np.random.rand()*1000))) …

Webサイトの更新を続ける秘訣

何かを続けることって辛くありませんか? 実は・・・続けることに努力は必要ありません。 あなた自身に対して合う方法を設定すれば、うまくいきます。 更新を続ける秘訣 報酬を設定する やる時間を決める やら …