RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

[PHP]まとめ読みをPSRで改良する(1)

今回の改良対象 → ミニ四駆まとめサイト なぜやるのか? PHPのバージョンアップによる速度の向上 一番はこれでしょう。 今のはPHP5.2で動いています。 1割から5割の速度向上が見込まれます。 1 …

[Meisyo]練習試合のバグ修正

練習試合のバグ修正を修正しました。 練習試合で大阪桐蔭2018(NPC)と当たるってマジ? 久々のバグ報告(ありがたい!)で、なんでこうなるかなーと思ってみたら、 下記のようにしたつもりが・・・ $v …

「実践!Chainerとロボットで学ぶディープラーニング」を作ってみた

実践!Chainerとロボットで学ぶディープラーニングを購入しました。 単純にロボを動かすのは楽しいです。 周りに意外と買った人が居ないようなので、レビューを書きました。 所感 ちょっとお高いけど、土 …

(VPSでつくる) WinSCPでFTP接続

連載第十回目です。 これまではVPSサーバーに対し、viエディタで色々なファイルを編集してきました。 ただ、今後はFlaskアプリなど、かなり作り込んだサービスの導入テストを行いますので、一ファイルず …

(VPSでつくる) CentOS7のインストール

連載第二回目です。 VPSサーバーのOSをCentOS7にします。 CentOS7は一般的に使われるLinuxベースのサーバーで、CentOS8よりサポート期間が長いので採用しました。 今回は、Cen …