RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス Web制作 Python

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-データサイエンス, Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】KPIマネジメント

事業を正しく成長させたい。ただ、単なる指標管理ではうまくいかない・・・。そこでこの書籍では、あるべき状態に基づいたストーリー上のKPIを設定し、無理なく事業を成長させていくヒントを学びましょう。 名称 …

[Meisyo]模擬戦の追加(テスト)vs 大阪桐蔭2018

模擬戦(NPC勝ち抜き戦)を追加しました! 模擬戦のコンセプトは「甲子園歴代優勝校と戦える場を」です。 経験値高め。もらえるアイテムも多いです。 挑戦には練習試合で7日に1回くらい拾える「試合チケット …

for内で選手個人データをSQLで呼び出すより、辞書型を利用した方が読み込みは早い

for内でSQLを呼び出すと遅い…。 自作野球ゲームMeisyoでは、明示的にデータを呼び出すためにfor内でSQLを利用していました。 CDs = {} # Cardデータ(選手id, 選手データ) …

Windows(64bit)環境でgccコマンドを使うためのMinGW-W64インストール

Windows10(64bit)環境でgccコマンドを使いたいということで、MinGWのインストールを行います。MinGWはコンパイラ(解読機)であり、プログラム言語であるC言語やC++の開発にも使用 …

分析スキルも大事だけど、思考法の方が大事だよっていう話

データサイエンス関連の仕事をしていて思うのは、 分析スキルも大事だけど、思考法の方が大事だよっていう話です。 最近、会社で教育・OJT関連の業務をしていて切に思うので、つらつらと書いていきます。 まず …