RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

Jupyter Notebook「7ブロック」でかんたん複数動画のフレームの切り出し(Movie To Image)

はじめに 機械学習のために、動画から画像のデータセットを取り出す必要がありました。 動画 → 画像の変換には多くのフリーソフトはありますが、 今回使おうとした「MOV」ファイルが読み込めるまともなフリ …

[Anaconda]Anacondaが動かない!TypeError: expected str, bytes or os.PathLike object, not NoneType

Anaconda Navigatorが起動できません。 昨日まで動いていたのに・・・。 エラー文はこちら TypeError: expected str, bytes or os.PathLike o …

[Meisyo]基本機能(守備位置変更)追加と練習の修正

下記変更を行いました。 ・基本機能(守備位置変更)の追加 ・練習No.3(高いor低い順に数字をクリック)にスタートボタンを追加 基本機能(守備位置変更)の追加 そういえば守備位置変更がなかった! ち …

[Meisyo]ソースコードから学ぶ試合の基礎設計1

ワンボタンで監督始点の高校野球の試合を楽しめる名将と呼ばれた者達。その試合中には、多くのアルゴリズムが活躍しています。 ここでは、試合の設計を理解することで強いチームを作る指針を記載しておきます。 ソ …

no image

まとめ読み バージョン1.1.1のリリース

フリーソフト「まとめ読み」バージョン1.1.1のリリースを行いました。 まとめ読み ダウンロードページ 変更点 検索方法の変更 検索マッチングの先を、「タイトル&内容」「内容」の2つに変更しました。 …