RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】機械学習を解釈する技術

多くの企業で導入されるようになってきた機械学習。 その機械の判断基準、本当にわかっていますか? 今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法 …

no image

急がば回れ「初めてのPHP5」の紹介

「今からプログラミング(PHP)はじめたいなあ」という方へ。 パソコンスクールで学ぶことやネットで独学するのも間違いなくいい方法です。 私はオライリージャパンから出ている「初めてのPHP5」をおすすめ …

【教材紹介】戦略的データサイエンス入門

ビジネスサイド(経営・営業・人事やエンジニアリングマネージャーなど)のあなたが1冊でデータサイエンスの概要を理解したい。 そんな時にはこの1冊でOK、分からない単語が出てくれば辞書としても使えるこの一 …

no image

[PHP]まとめ読みをPSRで改良する(4)

まとめ読みをPSRで改良する(3)から約一週間。 こんがらがっていた頭の中がすっきりして、なんとなくですがオブジェクト指向がわかってきたような気がします。 オブジェクト指向で大事そうなのは、機構(機能 …

[Meisyo]練習試合のバグ修正

練習試合のバグ修正を修正しました。 練習試合で大阪桐蔭2018(NPC)と当たるってマジ? 久々のバグ報告(ありがたい!)で、なんでこうなるかなーと思ってみたら、 下記のようにしたつもりが・・・ $v …