RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python データサイエンス

[Kaggle] Titanic 約80% by ランダムフォレスト

投稿日:2019年2月19日 更新日:

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。
Colaboratory

実施期間:2019/02/07~02/19
的中率:46%→80%
使用識別器:ロジスティック回帰、ランダムフォレスト、SVM、K-means、カーネルSVM
グリッドサーチ:あり

注意したこと:
・データをよく観察する。
・欠損値はよく考えて埋める。適当に埋めない。
・1つずつ理由を考える。

問題点:
・識別器の違いが判らなかった。(だいたい分かるようになってきた)
・分析のためのコードの書き方がわからなかった。
・名前の分類凝りすぎた感。(+αするなら男の名前と女の名前で列を分けたほうが良かったかも?)
・データ正規化の自作関数、data_normalize()がWarning出てしまう。
・NNとかCNN、LGBなどの優秀な識別器を自作できなかった。理解が足りない。
・ほぼほぼモノマネに終始してしまった。
・上のColaboratory URL完成してない!
・「もし乗客になった場合、死亡確率を下げるにはどうしたらいいの?」という問いに答えられない。

感想:
・時間かかったけど楽しかった。
・KaggleはPythonに慣れるのにはよさそう。
・他の人のコードをもっと読みたい。(カーネル読もね)
・Pythonやデータサイエンスの理解を深めたい。で、仕事で使いたい。

【追記:04/30】
LightGBM、XGBoostをさらに試したところ、84%の精度が出ました。
・・・とは言え、単純な「データ加工→学習→出力」ではチューニングしたランダムフォレストが一番精度高かったです。
2つのBoosting系は、出力後の結果を再度取り込んで学習させるなど、さらなる精度を求めるならよさそうです。(なお、ノンチューニングなので真価は発揮していない)

-Web制作, Python, データサイエンス

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]大型アップデート予定のお知らせ

名将と呼ばれた者達よりお知らせです。 下記アップデートを予定しています。 1・サーバーの移転(高速化) 今まで練習試合等で非常に時間がかかっていた問題が解消されます。 2・チーム名等の仕様変更 チーム …

(VPSでつくる) Python(Flask)でMariaDB(MySQL)へ接続できるアプリをもっと読みやすく改良してみよう

連載第十二回目です。 前回の記事で、Python3.6.8+FlaskでMariaDBに接続・データベースを編集するアプリを動作させる設定を行い、動作確認しました。 今回は、機能は前回と全く同じアプリ …

【教材紹介】施策デザインのための機械学習入門

機械学習のその問題設定、現実に一致していますか? 予測しただけになっていませんか? 本当に解きたい問題はなんでしょうか。問題設定の応用的な方法論を学ぶための一冊を紹介します。 名称 施策デザインのため …

[Meisyo]練習試合にレーティング制を導入

練習試合にレーティング制を導入しました。 レートはメイン画面に下記のように表示されます。 平均レートは1000です。 レーティングの変動⊿Rは下記の式で表されます。 a(レートRa)がb(レートRb) …

[Meisyo]Androidアプリ版 作成案1

「アンドロイドアプリの基本」的な本が届いて3日。だいたいわかった(わかってない)ので一応完成予想図を考えておきましょう。 [トップページ]→[ログイン画面]or[ゲーム画面] ・アプリの利用メリット …