RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】データ解析の実務プロセス入門

投稿日:2022年1月18日 更新日:

「データ分析を会社で初めて行いたい」「データ分析を任されたがどうすればいいかよく分からない」というときはこちらの書籍がおすすめ。良いデータ分析を構成する分析プロセスからデータの収集方法、探索的データ解析(EDA)、運用までをカバーする珍しい書籍です。

名称


データ解析の実務プロセス入門

著者

あんちべ

概要

難しい用語なしに、データ分析のプロセス全体を俯瞰した書籍。
他の書籍ではあまり見かけないが、実務では重要な運用や分析事例についての言及が多く載っている。
2人の登場人物の対話形式で進むため、さくさく読むことができる。

必要知識

なし

得られるスキル

データ分析プロセスの概要理解, データ収集, データ測定, 探索的データ解析の概要, 運用, KPI, テキストマイニング, ビジネスデータ分析事例

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】Interpretable Machine Learning(邦訳:解釈可能な機械学習)

機械学習の解釈可能性については、近年さらに重要視されています。 なぜでしょうか?それは、この書籍に記載されています。 このWebサイト(なんと無料!)では、説明性の性質の違いや、人間が考える良い説明と …

【教材紹介】機械学習を解釈する技術

多くの企業で導入されるようになってきた機械学習。 その機械の判断基準、本当にわかっていますか? 今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法 …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

[Meisyo+] データ分析その1 能力値ベースの打率予測

監督視点の野球ゲーム Meisyo+でデータが貯まってきたので、打率の予測をしてみました。 打率は高ければ高いほどいいですが、実際のところどの能力値を重要視していいかわかりません。 そのため、今回はど …

【教材紹介】戦略的データサイエンス入門

ビジネスサイド(経営・営業・人事やエンジニアリングマネージャーなど)のあなたが1冊でデータサイエンスの概要を理解したい。 そんな時にはこの1冊でOK、分からない単語が出てくれば辞書としても使えるこの一 …