RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス SQL データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】10年戦えるデータ分析入門

投稿日:2022年1月16日 更新日:

何度でも言いたいことですが、データ分析をするための技術はSQLが一番良いです。
PythonやRよりも制限が少なく、ビッグデータを扱えるのはSQLです。
分析に触れる第一歩としてこの本はいかがでしょうか?

名称


10年戦えるデータ分析入門

著者

青木峰郎

概要

データ分析にはPythonやRという論調が多いですが、データサイエンス実務ではSQLの出番の方が多いのではないでしょうか。
テラバイト級データはSQLでは対応可能ですが、Pythonだけで分析をすることは困難です。

SQLでは技術的には様々な分析ができます。
本書では多種多様な分析の方法論を、実際に架空データを使いながら分析することでスキルの定着を図ります。

必要知識

パソコンの操作

得られるスキル

SQL, PostgreSQL, select, where, order_by, group_by, join, window関数, DWH, バッチ処理

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, SQL, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

【教材紹介】施策デザインのための機械学習入門

機械学習のその問題設定、現実に一致していますか? 予測しただけになっていませんか? 本当に解きたい問題はなんでしょうか。問題設定の応用的な方法論を学ぶための一冊を紹介します。 名称 施策デザインのため …

野球ゲームデータで遊ぶデータサイエンス(正規分布の検定編)

名将と呼ばれた者達のデータを使って、データサイエンスを学んでみましょう! 生きた&整えられたデータは中々公開されていないので、今回の野球ゲームのデータは分析に適していると思われます。もちろん、Kagg …

[Meisyo]育成方針の不均衡を減らすための分析

もともと問題視していた育成方針の選択数の不均衡。 なぜそれが起こるのかというと・・・、 使えない(と思いやすい)育成方針があるってことなんですよね。 詳しく見ていきましょう。 各方針の能力上昇(201 …

【教材紹介】機械学習のための「前処理」入門

予測のためのデータ前処理(加工)にはさまざまな手法があります。本書では、非構造化データを中心に「予測するために」データ分析を進めていきます。前処理と銘打たれていますが、どちらかというとデータ加工のテク …

[Meisyo] 打撃・守備のバランス調整(v0.40)

変更概要 守備力を上方修正します。 詳細に言うと、OPSに対する影響度を、守備力=ミートまたは反応の有利な能力値にしました。 これまではOPSに対する影響は、守備力<ミートまたは反応の有利な能力値(2 …