RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】ディープラーニングを支える技術

投稿日:

近年目覚ましい発展を遂げた機械学習、ディープラーニング。その概要と技術の使い方を体系的に学ぶにはどの本がいいでしょうか?

私はこの本をお勧めします。

なぜなら、ディープラーニングについて、最先端の研究をリードする日本で数少ないユニコーン企業、Preferred NetworksのCOO(2022年2月現在)である岡野原さんが書いており、非常にわかりやすく、網羅的に書かれた本だからです。ある程度実務経験を積んだ私でさえ、学びなおしに最適なほど網羅性があります。

では紹介します。

名称


ディープラーニングを支える技術

著者

岡野原大輔

概要

ディープラーニングを支える周辺技術について、人工知能の歴史を紐解き、基礎~発展まで網羅的に説明します。

もちろん、機械学習の基礎についても触れます。

そこで重要な役割を果たした人や技術について、絵をふんだんに使った本です。数式もたまに出てきます。

これを読むことで、ディープラーニングでどのようなことができそうなのかなど、新規サービスについても考察を深めることができます。

必要知識

高校レベルの数学の知識

得られるスキル

基礎知識, 機械学習, ディープラーニング, 表現学習, 画像認識, 音声認識, 自然言語処理, 正規化層, スキップ接続, 注意機構(Attention)

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[社内コンペ] 細胞画像認識

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:2位 精度:68.3% 120枚をクラス1~3で各40枚としていました。 ただし、その数値に合わせに行こうとすること …

ヒストグラムの階級数を決める方法論

データ分析業務ははっきり言って泥臭い。 分析の設計を行い、可視化を行ってから使えるデータかどうか判断できる。 そもそもそれはデータ分析前の話なのだが。 今回は、可視化の中でもデータの傾向を把握するのに …

ゲームアプリ運営の分析ノウハウ vol.3 この状態のアプリはやべえ編

はじめに 皆さんお久しぶりです。れいです。 近しい友人(アプリ運営を長年経験)が転職することになり、色々話してみましたがやべえ状態ってあるんやなと思ったので共有します。 これは…他山の石としてください …

[Meisyo]育成方針の不均衡を減らすための分析

もともと問題視していた育成方針の選択数の不均衡。 なぜそれが起こるのかというと・・・、 使えない(と思いやすい)育成方針があるってことなんですよね。 詳しく見ていきましょう。 各方針の能力上昇(201 …

【教材紹介】XAI(説明可能なAI)

今日では、さまざまなデータが収集され、判断の自動化や数値予測の高度化が行われています。 そのAIの判断、どう説明すればいいかわかりますか? エクセルのようなテーブルデータだけでなく、画像やテキストに対 …