RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python

手書き数字診断士(機械学習)ver 0.1 K近傍法を使ってみた

投稿日:

手書き文字の判定精度が全然上がらないので、他の手法を試してみました。

sklearnの開発元によると、以下の方法が良いらしい・・・。

なるほど!SVCで上手くいかない → K近傍法だな!

早速実装
predict.py

from sklearn import datasets
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.externals import joblib

# データセットロード
dataset = datasets.load_digits()
#全データの最大値、全データ数確認
#print(np.amax(dataset.data)) # 最大値16
print(dataset.data.shape[0]) # 全データ数

# 設定用
x = dataset.data / 16 # 最大値を1にする
y = dataset.target

# 訓練データ/テストデータの分割
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=1)

# モデル作成
model = KNeighborsClassifier(n_neighbors=10)

# 学習
model.fit(x_train, y_train)

# 推定
y_pred = model.predict(x_test)

# 評価
score = metrics.accuracy_score(y_test, y_pred)
print("KN Score : {0:.4f}" . format(score))

# 間違い探し
co_mat = metrics.confusion_matrix(y_test, y_pred)
print(co_mat)

# 学習済みモデルの作成
joblib.dump(model, "consultant.pkl", compress=True)

sklearn上では・・・精度100%?
すごくいい数字です。ちなみにSVCは0.98程度でした。

結果










結果まとめ

正答率:5/10

・・・(^o^;)
正答率は良くはなりましたが、まだまだ未完成みたいですね。

データ整形のサイズを56×56→8×8にする時に、
mean(平均値)で丸めちゃってるのがおかしいのかな・・・。

つづく、はず。

-Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

TensorFlowまで到達

ちょいちょい数式に詰まりながらも、DeeplearningのフレームワークTensorFlowの学習まで漕ぎ着けました。 一番困ったのは「説明無しで数式使うよ!」 マジやめてください・・・まあ勉強する …

「実践!Chainerとロボットで学ぶディープラーニング」を作ってみた

実践!Chainerとロボットで学ぶディープラーニングを購入しました。 単純にロボを動かすのは楽しいです。 周りに意外と買った人が居ないようなので、レビューを書きました。 所感 ちょっとお高いけど、土 …

ゲームアプリ運営の分析ノウハウ vol.2 新規登録者編

はじめに アプリ開発者によくある悩み・・・登録者がゲームを続けてくれません!!。 続けてくれないをより細かく言うと、(1)コンテンツを一通りプレイしてもらいたいのか、(2)毎日プレイしてほしいのかによ …

[Meisyo] ver 0.31 リリース情報

名将と呼ばれた者達をver 0.31にアップデートします。 更新概要 1・投手配球設定の追加 2・練習試合マッチング方法の修正 3・課金決済の導入 4・その他 5・アンケート 更新詳細 投手配球設定の …

Flask-Babelを使って、Pythonアプリで多言語対応を行う

Pythonで多言語対応してみたいなーと思っていました。 思っていましたが、実際になかなか使うタイミングがない・・・。 今回自作ゲームでユーザー数の増加がみられ、かつ海外からのアクセスも複数確認できた …