RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Web制作 Python

手書き数字診断士(機械学習)ver 0.1 K近傍法を使ってみた

投稿日:

手書き文字の判定精度が全然上がらないので、他の手法を試してみました。

sklearnの開発元によると、以下の方法が良いらしい・・・。

なるほど!SVCで上手くいかない → K近傍法だな!

早速実装
predict.py

from sklearn import datasets
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.externals import joblib

# データセットロード
dataset = datasets.load_digits()
#全データの最大値、全データ数確認
#print(np.amax(dataset.data)) # 最大値16
print(dataset.data.shape[0]) # 全データ数

# 設定用
x = dataset.data / 16 # 最大値を1にする
y = dataset.target

# 訓練データ/テストデータの分割
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=1)

# モデル作成
model = KNeighborsClassifier(n_neighbors=10)

# 学習
model.fit(x_train, y_train)

# 推定
y_pred = model.predict(x_test)

# 評価
score = metrics.accuracy_score(y_test, y_pred)
print("KN Score : {0:.4f}" . format(score))

# 間違い探し
co_mat = metrics.confusion_matrix(y_test, y_pred)
print(co_mat)

# 学習済みモデルの作成
joblib.dump(model, "consultant.pkl", compress=True)

sklearn上では・・・精度100%?
すごくいい数字です。ちなみにSVCは0.98程度でした。

結果










結果まとめ

正答率:5/10

・・・(^o^;)
正答率は良くはなりましたが、まだまだ未完成みたいですね。

データ整形のサイズを56×56→8×8にする時に、
mean(平均値)で丸めちゃってるのがおかしいのかな・・・。

つづく、はず。

-Web制作, Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

「名将と呼ばれた者達」目標

目標 ・アクティブプレイヤー100人以上(2018年12月末) ・登録人数100人(2018年9月)→達成し次第サーバー変更(AWS?)#試合クソ重くてすみません!弱さーばなんです ・2018年8月公 …

[Meisyo]育成方針の不均衡を減らすための分析

もともと問題視していた育成方針の選択数の不均衡。 なぜそれが起こるのかというと・・・、 使えない(と思いやすい)育成方針があるってことなんですよね。 詳しく見ていきましょう。 各方針の能力上昇(201 …

(VPSでつくる) Python(Flask)でMariaDB(MySQL)へ接続できるアプリをもっと読みやすく改良してみよう

連載第十二回目です。 前回の記事で、Python3.6.8+FlaskでMariaDBに接続・データベースを編集するアプリを動作させる設定を行い、動作確認しました。 今回は、機能は前回と全く同じアプリ …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

【教材紹介】Python機械学習プログラミング(第3版)* 文量多め

今回の書籍は内容理解する難易度が高めですが、機械学習の基礎(用語・位置付け・アルゴリズム)が網羅できる、Pythonでの機械学習を学ぶためのおすすめ教材を紹介します。 正式名(ISBNコード) [第3 …