RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンスおすすめ教材紹介【Skill Stacks】 データサイエンス SQL

【教材紹介】10年戦えるデータ分析入門

投稿日:2022年1月16日 更新日:

何度でも言いたいことですが、データ分析をするための技術はSQLが一番良いです。
PythonやRよりも制限が少なく、ビッグデータを扱えるのはSQLです。
分析に触れる第一歩としてこの本はいかがでしょうか?

名称


10年戦えるデータ分析入門

著者

青木峰郎

概要

データ分析にはPythonやRという論調が多いですが、データサイエンス実務ではSQLの出番の方が多いのではないでしょうか。
テラバイト級データはSQLでは対応可能ですが、Pythonだけで分析をすることは困難です。

SQLでは技術的には様々な分析ができます。
本書では多種多様な分析の方法論を、実際に架空データを使いながら分析することでスキルの定着を図ります。

必要知識

パソコンの操作

得られるスキル

SQL, PostgreSQL, select, where, order_by, group_by, join, window関数, DWH, バッチ処理

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンスおすすめ教材紹介【Skill Stacks】, データサイエンス, SQL

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[社内コンペ] 細胞画像認識

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:2位 精度:68.3% 120枚をクラス1~3で各40枚としていました。 ただし、その数値に合わせに行こうとすること …

ゲームアプリ運営の分析ノウハウ vol.2 新規登録者編

はじめに アプリ開発者によくある悩み・・・登録者がゲームを続けてくれません!!。 続けてくれないをより細かく言うと、(1)コンテンツを一通りプレイしてもらいたいのか、(2)毎日プレイしてほしいのかによ …

[Kaggle] Titanic 約80% by ランダムフォレスト

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。 Colaboratory 実施期間:2019/0 …

Skill Stacksの作成にあたって

Skill Stacksを書いている理由は、本をはじめとした教材の紹介サイトを作ろうと思っており、それが実際に求められていそうかを確認するためのテストマーケティング的な位置づけです。 「なぜ必要か?」 …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …