RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス

決定木分析(Python CHAID)を解釈する

投稿日:2020年1月18日 更新日:

意思決定のために使用される決定木分析

Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。
CARTは下記の2点を含め、さまざまな理由から使われていません。

  1. 2分岐のみのため単純すぎる
  2. 過学習させるアルゴリズムのため、小さすぎる区分が出現するので扱いにくい

コードは以下の通り非常に簡単です。

from sklearn import tree
clf = tree.DecisionTreeClassifier(max_depth=3)

(参考:scikit-learn で決定木分析 (CART 法)

実務では各種BIでのCHAID(指標:カイ二乗値)が使われています。
利点としては、以下の2点が大きいです。

  1. 多分岐
  2. 過学習する前に学習を止める

Pythonには決定木(CHAID)の一般的なライブラリがないので、今回はライブラリCHAIDを紹介します。

概要

下記のツイートにまとめています。
まずはREADMEを読んでCHAIDをインストールしてください。
GraphvizとOrcaのインストールは項目Exporting the treeをご覧ください。

Graphvizインストールできない問題の対策

Windows10の場合、pipではなくcondaで入れるとうまく行きました。

conda install graphviz
conda install python-graphviz

Graphvizのbinとdot.exeまでの環境パスは通しました。

CHAIDテストコードにCSVを読み込ませる方法

下記コードで対応可能です。

df = pd.read_csv('sample.csv')

col_answer = 'flag_keizoku'
ndarr = df.drop(columns=col_answer).values
arr = df[col_answer].values

検証

CHAIDとBIツール(今回はSPSS)との差分を検証しました。

検証方法

実データから決定木を出力してみる。

説明変数

ある2週間(1-14日)にログインしたユーザーの総ログイン日数
*開始日を1日目としてカウント
*値=1~14

目的変数

ユーザーごとの15-28日目の継続有無
*ログインしたかどうかで判別
*値=0 or 1

結果概要

SPSSだとある程度グループ化されるのでしきい値の判断はしやすいが、CHAIDはグループ化されず数値が前後してしまうため解釈が難しい。
解釈のために使っているのに、解釈が難しいとは・・・使えないやんって話です。

結果詳細

SPSS


グループは7個できました。
[1], [2], [3-5], [6-8], [9-11], [12, 13], [14]

CHAID


グループは11個できました。
[1], [2], [3], [4], [5, 7], [6, 8], [9, 10], [11], [12], [13], [14]
*個体数nが描写されない問題。コードでの確認は可能ですが、可視化したグラフとしては使いにくい。

結果解釈

前の2週間のログイン日数が多いほど、次の2週間でいずれかの日にログインしている可能性が高い。

うん、そうだね・・・(当たり前)としか言えないのですが、どれくらいの日数ログインしていないと継続しにくいか?を知るには良い結果となります。

14日ログインしている人のうち、3.8%がログインしてないってまずくない?という感じで解釈していきます。

その他には、時系列で比較することで、継続率の効果検証を行うことができます。

仮説:継続を構成するユーザーのうち、どの層のユーザーの継続率が上がったのか?
→ 全体的に上がったのか?
→ 特定のユーザー層にのみ効果があったのか?

のように細かく調査することができます。

このCHAIDの何が問題か

決定木分析はあくまで、いい感じで区分を作り、その結果を解釈して施策に繋げるために行っているので、グループ化があまりに細かく、理解しにくいモノだと使えません。

SPSSに比べ、CHAIDのカイ二乗値は高いですが、適切なグループ化をしていないので、人が使うためには、このCHAIDはめちゃくちゃわかりにくい

結局、意思決定のために分析をしているのに、読み取れない…のようなことが起こりえます。

そういった懸念点があっても、このCHAIDは無料ですので、コスト面を考えると使う価値はありますね。SPSSはライセンス料がかなーり高いので、個人で要因分析する分にはCHAIDで問題ないでしょう。

-Python, データサイエンス

執筆者:


  1. […] そういえば分析記事(決定木分析)を書いてた→決定木分析(Python CHAID)を解釈する […]

comment

メールアドレスが公開されることはありません。

関連記事

[Meisyo] 練習の不均衡是正

練習に不均衡が生じているので、アップデートで改善します。 ちなみに練習の方法自体を変更しようと思っています。 すぐには実装しません。(案が固まっていないです) 基本的に平均が150より大幅に高い(また …

【教材紹介】異端の統計学ベイズ

今回はベイズ統計学の歴史書です。今でこそ、頻度論の統計学とベイズ統計学などをひとまとめにして統計学と言われていますが、そこに至るまでに何があったのか?そちらを詳細に記述する500ページ越えの大作です。 …

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

[python]MNISTの学習モデルを保存し、テストする

機械学習のHello World的なMNISTにて、学習モデルを保存し、実行する際のメモ。 用意するもの PC コマンドプロンプト インストール(python、sklearn、numpy) 学習時のコ …

【教材紹介】Interpretable Machine Learning(邦訳:解釈可能な機械学習)

機械学習の解釈可能性については、近年さらに重要視されています。 なぜでしょうか?それは、この書籍に記載されています。 このWebサイト(なんと無料!)では、説明性の性質の違いや、人間が考える良い説明と …