RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python

TensorFlow RNNで詰まるの巻

投稿日:

DeeplearningのフレームワークTensorFlowの学習まで漕ぎ着けました。
CNN(画像認識用と言っても過言ではない)はゼロから始めるディープラーニングでだいたいOK。
何度か読み返してわりとなんとか・・・。

実装面がちょっと困る。

なぜなら、数列の扱いに慣れていないからだろう。
行列の変形や逆行列の導出にちょっと詰まるくらいだが、スラスラ理解できるようにならねば・・・。

RNN(自然言語処理等の時系列把握)が詰まった。

なぜなら「突然の数式全開」

とりあえずまずは写経して、もう1度読む時に日本語訳しよう。

プログラミングはまず書くことが大事だと思います。割とマジで。

写経前「?????」

写経後「?????動いた!面白いけど謎」

読解中「あ!これやったやつやん~こういう理解でいいんか」

読解後「だいたいわかる!!」

出来ないって思ったら負けなんですよね。自分に負ける。それがだいたいの失敗理由だ。

-Python

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

野球ゲームデータで遊ぶデータサイエンス(正規分布の検定編)

名将と呼ばれた者達のデータを使って、データサイエンスを学んでみましょう! 生きた&整えられたデータは中々公開されていないので、今回の野球ゲームのデータは分析に適していると思われます。もちろん、Kagg …

[Python]グリッドサーチを軽量化し、チューニングしたパラメータも反映する機構を作る

パラメータチューニング方法であるグリッドサーチ、 確かに自動で実行してくれて、すごく便利なのですが問題点があります。 めっちゃ時間がかかる もし、下記のパラメータ設定のモノを全てグリッドサーチしようと …

[Meisyo+] データ分析その1 能力値ベースの打率予測

監督視点の野球ゲーム Meisyo+でデータが貯まってきたので、打率の予測をしてみました。 打率は高ければ高いほどいいですが、実際のところどの能力値を重要視していいかわかりません。 そのため、今回はど …

「実践!Chainerとロボットで学ぶディープラーニング」を作ってみた

実践!Chainerとロボットで学ぶディープラーニングを購入しました。 単純にロボを動かすのは楽しいです。 周りに意外と買った人が居ないようなので、レビューを書きました。 所感 ちょっとお高いけど、土 …

[Python] ディープラーニングのモデル「VGG16」を使って画像認識をし、判断した理由の可視化をする。

今日はデータ分析から趣向を変えて画像認識を行います。 やることは簡単。 1.撮った写真を使って画像認識させ、何が写っているか判断させる。 2.何が写っているかを判断した理由(位置)を可視化する。 以上 …