RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】深層学習 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

投稿日:2022年1月7日 更新日:

米国大学のコンピューターサイエンスの講義を無料で、かつ日本語で公開されている教材がありましたので共有いたします。

名称

深層学習 DS-GA 1008 · 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

主催

ニュー欲大学データ・サイエンス・センター
Yann LeCun & Alfredo Canziani

概要

深層学習の最新技術(基礎・応用)について無料で学ぶことができる。
応用技術のベースとして、教師あり・教師なし深層学習、ベクトル埋め込みや距離学習の方法、画像認識で重要な畳み込みニューラルネットワーク(CNN)、時系列処理で重要な再帰型ニューラルネットワーク(RNN)、近年の自然言語処理の躍進を支えてきたAttentionなどを学ぶ。応用技術として、画像認識、BERTをはじめとした自然言語処理、グラフ構造ネットワークを予測するGCNなどを、理論だけではなくPythonのコードも記載されているため、動かしながら学ぶことができる。

必要知識

基礎的な機械学習及び数学の知識
・機械学習の流れが分かっていればOK
目的設定 → データ準備 → モデル設定 → 学習 → 検証
・大学教養課程の線形代数や微分
特に偏微分がふんだんに使われる

得られるスキル

深層学習, CNN, RNN, GCN, EBM, Attention, BERT, Auto Encoder

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …

Jupyter Notebook「7ブロック」でかんたん複数動画のフレームの切り出し(Movie To Image)

はじめに 機械学習のために、動画から画像のデータセットを取り出す必要がありました。 動画 → 画像の変換には多くのフリーソフトはありますが、 今回使おうとした「MOV」ファイルが読み込めるまともなフリ …

[Python] PDFファイルから文字抽出

「大量にPDFファイルがあり、そこから文字を抽出したい。」 そんなお悩みにPython(プログラム言語)でお答えします! まずは、PDFの種類を確認し、それぞれに対応コードを例示します。 * 今回、構 …