RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】深層学習 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

投稿日:2022年1月7日 更新日:

米国大学のコンピューターサイエンスの講義を無料で、かつ日本語で公開されている教材がありましたので共有いたします。

名称

深層学習 DS-GA 1008 · 2020年度春学期 · ニューヨーク大学データ・サイエンス・センター

主催

ニュー欲大学データ・サイエンス・センター
Yann LeCun & Alfredo Canziani

概要

深層学習の最新技術(基礎・応用)について無料で学ぶことができる。
応用技術のベースとして、教師あり・教師なし深層学習、ベクトル埋め込みや距離学習の方法、画像認識で重要な畳み込みニューラルネットワーク(CNN)、時系列処理で重要な再帰型ニューラルネットワーク(RNN)、近年の自然言語処理の躍進を支えてきたAttentionなどを学ぶ。応用技術として、画像認識、BERTをはじめとした自然言語処理、グラフ構造ネットワークを予測するGCNなどを、理論だけではなくPythonのコードも記載されているため、動かしながら学ぶことができる。

必要知識

基礎的な機械学習及び数学の知識
・機械学習の流れが分かっていればOK
目的設定 → データ準備 → モデル設定 → 学習 → 検証
・大学教養課程の線形代数や微分
特に偏微分がふんだんに使われる

得られるスキル

深層学習, CNN, RNN, GCN, EBM, Attention, BERT, Auto Encoder

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

Jupyter Notebook「7ブロック」でかんたん複数動画のフレームの切り出し(Movie To Image)

はじめに 機械学習のために、動画から画像のデータセットを取り出す必要がありました。 動画 → 画像の変換には多くのフリーソフトはありますが、 今回使おうとした「MOV」ファイルが読み込めるまともなフリ …

ゲームデータで学ぶSQL(初級編)

近年のデータサイエンスブームをきっかけに「SQLを学びたい」と思った方へ。 そう思ったところで、壁になってくるのは実データの入手です。 私は職業としてデータサイエンス関連の業務に従事していますが、キレ …

[Meisyo]パラメータバランス調整 ver 0.10(a)

パラメータバランスを調整します。 理由としては、ミートが強すぎるからです。 ミートが神の地位を手に入れて早・・・というより、Meisyoが最初からそうだった。 「ミートを上げれば即ち打てる」で、パワー …

【教材紹介】データ解釈学入門

「データ分析の初心者はこれを読むべし」と思う本です。なぜなら、データの解釈・観測をはじめデータサイエンスは難しい事柄が多く、かつビジネスで分析をする際に、初心者をはじめ分析者全員が陥りやすい罠があるか …

ゲームアプリ運営の分析ノウハウ vol.1 概要編

はじめに 以前から、Twitterなどでこんな悩みを見聞きしていました。 「ゲームアプリを運営する際に、どのような視点で、どのような指標を分析すべきかわからない」というものです。今回はそちらのお悩みに …