RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】機械学習を解釈する技術

投稿日:

多くの企業で導入されるようになってきた機械学習。
その機械の判断基準、本当にわかっていますか?

今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法を解説した書籍を紹介します。

名称


機械学習を解釈する技術

著者

森下光之助

概要

地味な表紙をしている本書。
ただ、内容は今後とても重要だと考えられます。
なぜなら、新聞でよく出てくるようなAIの解釈性を担っているのは、ほとんどがこれらの技術だと言って過言ではありません。

特徴量の重要性、変数と予測値の関係性、個別サンプルの予測説明。
そして、それらをまとめて確認できるSHAP(SHapley Additive exPlanations)。
テーブルデータに利用するそれらの方法を、ライブラリと簡単な数式で読み解きます!

必要知識

機械学習の基礎的な知識
高校数学レベルの数式を読む力

得られるスキル

テーブルデータに対するXAI理論
Python、機械学習の解釈性の定義、線形会期モデル、Permutation Feature Importance、Partial Dependence、Individual Conditional Expectation、SHAP(SHapley Additive exPlanations)

こちらは、テーブルデータを重点的に説明した書籍です。いろいろなデータの大局的な説明が必要な場合は、【教材紹介】XAI(説明可能なAI)をご覧ください。
その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


  1. […] こちらは、【教材紹介】機械学習を解釈する技術に比べ、データの種別ごとのXAIなど大局的な説明が多いです。 その他の教材紹介ページはこちら → Skill Stacks […]

comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

スッキリわかるSQL入門 第2版 題材A 問75

回答が非常に長い気がするのはなぜだろうか。 /* 自己結合を用いた場合 */ SELECT DISTINCT K1.名義, K1.口座番号, K1.種別, K1.残高, K1.更新日 FROM 口座 …

【教材紹介】統計的因果探索

ビジネスの因果構造をデータから理解することができれば、マーケティングやセールスで何を試みれば売上や利益が上がるのかがわかります。データから因果構造を推定できる、統計的因果探索の1手法LiNGAMの書籍 …

[Python]グリッドサーチを軽量化し、チューニングしたパラメータも反映する機構を作る

パラメータチューニング方法であるグリッドサーチ、 確かに自動で実行してくれて、すごく便利なのですが問題点があります。 めっちゃ時間がかかる もし、下記のパラメータ設定のモノを全てグリッドサーチしようと …

Flask-Babelを使って、Pythonアプリで多言語対応を行う

Pythonで多言語対応してみたいなーと思っていました。 思っていましたが、実際になかなか使うタイミングがない・・・。 今回自作ゲームでユーザー数の増加がみられ、かつ海外からのアクセスも複数確認できた …

【教材紹介】異端の統計学ベイズ

今回はベイズ統計学の歴史書です。今でこそ、頻度論の統計学とベイズ統計学などをひとまとめにして統計学と言われていますが、そこに至るまでに何があったのか?そちらを詳細に記述する500ページ越えの大作です。 …