RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】効果検証入門

投稿日:2022年1月9日 更新日:

広告やマーケティング施策のビジネスインパクトの測定はだいたい間違っています。
それを正しく測定するための因果推論に関して、日本語ベースのわかりやすい1冊を紹介します。

名称


効果検証入門

著者

安井翔太

概要

現実世界での比較は本来はとても難しいです。
比較が正しくできていないために、正しい因果関係を把握できておらず、間違った意思決定が行われることがままあります。本書では、そういった間違いを正しながら、ビジネスの現場で使える5つの因果推論手法を学ぶことができます。

必要知識

基礎的な数学の知識(回帰分析が解けるレベル)

得られるスキル

R, セレクションバイアス, ランダム化比較試験, 回帰分析(介入効果測定), 傾向スコア法, 差分の差分法, 回帰不連続デザイン

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

野球ゲームデータで遊ぶデータサイエンス(正規分布の検定編)

名将と呼ばれた者達のデータを使って、データサイエンスを学んでみましょう! 生きた&整えられたデータは中々公開されていないので、今回の野球ゲームのデータは分析に適していると思われます。もちろん、Kagg …

[Meisyo]パラメータバランス調整 ver 0.10(a)

パラメータバランスを調整します。 理由としては、ミートが強すぎるからです。 ミートが神の地位を手に入れて早・・・というより、Meisyoが最初からそうだった。 「ミートを上げれば即ち打てる」で、パワー …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

ヒストグラムの階級数を決める方法論

データ分析業務ははっきり言って泥臭い。 分析の設計を行い、可視化を行ってから使えるデータかどうか判断できる。 そもそもそれはデータ分析前の話なのだが。 今回は、可視化の中でもデータの傾向を把握するのに …

[Kaggle] Titanic 約80% by ランダムフォレスト

実力不足感が否めませんが、Kaggleのチュートリアル的なTitanicにおいてランダムフォレストで正答率約80%を出せたのでコードを載せておきます。 Colaboratory 実施期間:2019/0 …