RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】ディープラーニングを支える技術

投稿日:

近年目覚ましい発展を遂げた機械学習、ディープラーニング。その概要と技術の使い方を体系的に学ぶにはどの本がいいでしょうか?

私はこの本をお勧めします。

なぜなら、ディープラーニングについて、最先端の研究をリードする日本で数少ないユニコーン企業、Preferred NetworksのCOO(2022年2月現在)である岡野原さんが書いており、非常にわかりやすく、網羅的に書かれた本だからです。ある程度実務経験を積んだ私でさえ、学びなおしに最適なほど網羅性があります。

では紹介します。

名称


ディープラーニングを支える技術

著者

岡野原大輔

概要

ディープラーニングを支える周辺技術について、人工知能の歴史を紐解き、基礎~発展まで網羅的に説明します。

もちろん、機械学習の基礎についても触れます。

そこで重要な役割を果たした人や技術について、絵をふんだんに使った本です。数式もたまに出てきます。

これを読むことで、ディープラーニングでどのようなことができそうなのかなど、新規サービスについても考察を深めることができます。

必要知識

高校レベルの数学の知識

得られるスキル

基礎知識, 機械学習, ディープラーニング, 表現学習, 画像認識, 音声認識, 自然言語処理, 正規化層, スキップ接続, 注意機構(Attention)

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

決定木分析(Python CHAID)を解釈する

意思決定のために使用される決定木分析 Scikit-learnでの決定木にはCART(指標:giniまたはentropy)他が採用されています。 CARTは下記の2点を含め、さまざまな理由から使われて …

【教材紹介】機械学習を解釈する技術

多くの企業で導入されるようになってきた機械学習。 その機械の判断基準、本当にわかっていますか? 今回は、実務に利用するために最低限の技術として、変数(特徴量)の重要度や変数と予測値の関係性を求める方法 …

[Meisyo]今後やっていきたいこと

Meisyoで今年中にやっておきたいこと これさえやればDAU(日ごとのアクティブユーザ)が100人を超えるのでは?と思います。 まずは目的・内容を書いて、理由と考察を書きます。 目的 ユーザがゲーム …

【社内コンペ】回帰分析メモ 完全版

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:1問差で2位でした。残念。 今回の目的変数 建築物の坪単価 ※「え、建物の単価じゃないのか」と思ったあなたは正常。 …

Pandasに行を追加する時はappendを使わず、コレを使おう

はじめに 筆者は仕事柄Pythonのコードレビューをすることが多いのですが、まれにPandasに行を追加する最適な方法で相談されることがあるので、今回書きました。 まず言えることは、Pandasの標準 …