RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

Python データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】ディープラーニングを支える技術

投稿日:

近年目覚ましい発展を遂げた機械学習、ディープラーニング。その概要と技術の使い方を体系的に学ぶにはどの本がいいでしょうか?

私はこの本をお勧めします。

なぜなら、ディープラーニングについて、最先端の研究をリードする日本で数少ないユニコーン企業、Preferred NetworksのCOO(2022年2月現在)である岡野原さんが書いており、非常にわかりやすく、網羅的に書かれた本だからです。ある程度実務経験を積んだ私でさえ、学びなおしに最適なほど網羅性があります。

では紹介します。

名称


ディープラーニングを支える技術

著者

岡野原大輔

概要

ディープラーニングを支える周辺技術について、人工知能の歴史を紐解き、基礎~発展まで網羅的に説明します。

もちろん、機械学習の基礎についても触れます。

そこで重要な役割を果たした人や技術について、絵をふんだんに使った本です。数式もたまに出てきます。

これを読むことで、ディープラーニングでどのようなことができそうなのかなど、新規サービスについても考察を深めることができます。

必要知識

高校レベルの数学の知識

得られるスキル

基礎知識, 機械学習, ディープラーニング, 表現学習, 画像認識, 音声認識, 自然言語処理, 正規化層, スキップ接続, 注意機構(Attention)

その他の教材紹介ページはこちら → Skill Stacks

-Python, データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

[Meisyo]練習難易度の不均衡是正への分析的アプローチ2

[Meisyo]練習難易度の不均衡是正への分析的アプローチから早3か月。 「練習ごとに難易度が違いすぎるんですけど!!」という不満は少しは解消されたかなー・・・ 効果測定してないのにわかるの?エスパー …

[社内コンペ] 間取り予測

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:3位 精度:60.7% 今回は学習データが12,000件ほどあり、ある程度多いデータ量での学習ができました。 学習デ …

(VPSでつくる) Pythonのバージョンを2.7.5から3.6.8にする

連載第四回目です。 CentOS7にインストールされているPythonのバージョンが2.7なので、バージョンアップをします。 そうしないとPythonのアプリが動きません。 なぜなら、Python2と …

TensorFlow RNNで詰まるの巻

DeeplearningのフレームワークTensorFlowの学習まで漕ぎ着けました。 CNN(画像認識用と言っても過言ではない)はゼロから始めるディープラーニングでだいたいOK。 何度か読み返してわ …

[Meisyo] 練習の不均衡是正

練習に不均衡が生じているので、アップデートで改善します。 ちなみに練習の方法自体を変更しようと思っています。 すぐには実装しません。(案が固まっていないです) 基本的に平均が150より大幅に高い(また …