RのWeb制作

Webサービス制作のための技術情報を。データ分析(Python、機械学習コンペ他)や自作野球ゲームMeisyoのこと中心。

データサイエンス データサイエンスおすすめ教材紹介【Skill Stacks】

【教材紹介】データ解釈学入門

投稿日:2022年1月11日 更新日:

「データ分析の初心者はこれを読むべし」と思う本です。なぜなら、データの解釈・観測をはじめデータサイエンスは難しい事柄が多く、かつビジネスで分析をする際に、初心者をはじめ分析者全員が陥りやすい罠があるからです。今回は、それらの落とし穴を正しく考慮するための理解しやすい書籍を紹介します。

名称


データ解釈学

著者

江崎貴裕

概要

データサイエンスは難しいです。特に、簡単に思われがちなデータの観測、収集、抽出、操作について説明されている書籍は多くはありません。その時点でその分析は無価値・・・というより、有害になりえます。
今回の書籍はそれらの基礎的知識をはじめ、分析とは何なのか、どう再現性(科学的姿勢)を担保していくのかを解説しています。

必要知識

なし

得られるスキル

測定, 誤差の分解, バイアス, 交絡因子, 因果関係, サンプリング, 記述統計量, 分布, 多変量データ, 信頼性, 再現性

その他の教材紹介ページはこちら → Skill Stacks

-データサイエンス, データサイエンスおすすめ教材紹介【Skill Stacks】

執筆者:


  1. […] 【教材紹介】データ解釈学入門 […]

comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

ゲームアプリ運営の分析ノウハウ vol.3 この状態のアプリはやべえ編

はじめに 皆さんお久しぶりです。れいです。 近しい友人(アプリ運営を長年経験)が転職することになり、色々話してみましたがやべえ状態ってあるんやなと思ったので共有します。 これは…他山の石としてください …

[Python] 機械学習での変数選択自動化(SVRを例に)

今回、会社のコンペで255というとんでもない量の変数を扱うことになりました。 価格予想を行うコンペです。 今回のデータのおさらい データ量は1500程度。8:2で分けると検証データが300しかないすご …

【教材紹介】数理モデル入門

本当にそのモデルでいいんですか? データ分析を活用する数理モデルにはいろいろな種類があります。ただ、問題設定に合わないモデルが設定されていることがままあります。今回紹介する書籍では、体系的に数理モデル …

【社内コンペ】回帰分析メモ 完全版

これは何? 某社で行われている社内コンペのメモです。私の備忘録でもあります。 結果:1問差で2位でした。残念。 今回の目的変数 建築物の坪単価 ※「え、建物の単価じゃないのか」と思ったあなたは正常。 …

【教材紹介】前処理大全

前処理はデータ分析で重要な事項です。なぜなら、有用な特徴情報を上手く抽出できていなければどんなモデルであれ無用の長物です。ただ、前処理は体系だった学問としては存在せず、実務の中で学んでいくことが多いた …